JetGene—Online Database and Toolkit for an Analysis of Regulatory Regions or Nucleotide Contexts at Differently Translated Plants Transcripts †
Abstract
:1. Introduction
2. Experiments
2.1. The Motivation for the Development of JetGene
2.2. “System of Nested Datasets” Algorithm
3. Results
3.1. Database Overview
- Amino Acid Position
- Codon Position
- Codon Usage
- CDS/cDNA/5′-UTR/3′-UTR Length
- CpG-Island in CDS/cDNA/5′-UTR/3′-UTR
- GC-Content in CDS/cDNA/5′-UTR/3′-UTR
- Nucleotide by Position in CDS/cDNA/5′-UTR/3′-UTR
- Nucleotide A/C/G/T in CDS/cDNA/5′-UTR/3′-UTR
- Gene Names
- Transcript Names
- Chromosome
- Strand
- Motifs
- Gene Ontology Annotations
3.2. Modules Specific to “CDS Data” Only
3.2.1. Amino Acid Position
3.2.2. Codon Position
3.2.3. Codon Usage
3.3. Modules Specific to “CDS Data”, “cDNA Data”, “5′-UTR Data”, “3′-UTR Data”
3.3.1. CDS/CDNA/5′-UTR/3′-UTR Length
3.3.2. CpG-Island in CDS/CDNA/5′-UTR/3′-UTR
3.3.3. GC-Content in CDS
3.3.4. Nucleotide by Position in CDS/CDNA/5’-UTR/3’-UTR
3.3.5. Nucleotide A/C/G/T in CDS/CDNA/5′-UTR/3′-UTR
3.3.6. Gene Names
3.3.7. Transcript Names
3.3.8. Chromosome
3.3.9. Strain
3.3.10. Motifs
4. Discussion
4.1. Comparison JetGene with Other Online Databases
4.2. Usage of JetGene
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Abbreviations
CDS | Coding DNA Sequence |
cDNA | Complementary DNA |
GO | Gene Ontology Annotation |
HT | High Expressed Transcripts |
LT | Low Expressed Transcripts |
UTR | Untranslated Region |
References
- Guerra, D.; Crosatti, C.; Khoshro, H.; Mastrangelo, A.M.; Mica, E.; Mazzucotelli, E. Post-transcriptional and post-translational regulations of drought and heat response in plants: A spider’s web of mechanisms. Front. Plant Sci. 2015, 6, 57. [Google Scholar] [CrossRef] [Green Version]
- Bärenfaller, K.; Grossmann, J.; Grobei, M.A.; Hull, R.; Hirsch-Hoffmann, M.; Yalovsky, S.; Zimmermann, P.; Grossniklaus, U.; Gruissem, W.; Baginsky, S. Genome-scale proteomics reveals Arabidopsis thaliana gene models and proteome dynamics. Science 2008, 320, 938–941. [Google Scholar] [CrossRef] [PubMed]
- Bärenfaller, K.; Massonnet, C.; Walsh, S.; Baginsky, S.; Buhlmann, P.; Hennig, L.; Hirsch-Hoffmann, M.; Howell, K.A.; Kahlau, S.; Radziejwoski, A.; et al. Systems-based analysis of Arabidopsis leaf growth reveals adaptation to water deficit. Mol. Syst. Biol. 2012, 8, 606. [Google Scholar] [CrossRef]
- Kawaguchi, R.; Bailey-Serres, J. mRNA sequence features that contribute to translational regulation in Arabidopsis. Nucleic Acids Res. 2005, 33, 955–965. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yates, A.; Achuthan, P.; Akann, W.; Allen, J.; Allen, J.; Alvarez-Jarreta, J.; Amode, M.R.; Armean, I.; Azov, A.; Bennett, R.; et al. Ensembl 2020. Nucleic Acids Res. 2020, 48, D682–D688. [Google Scholar] [CrossRef] [PubMed]
- Carbon, S.; Douglass, E.; Dunn, N.; Good, B.; Harris, N.L.; Lewis, S.E.; Mungall, C.J.; Basu, S.; Chisholm, R.L.; Dodson, R.J.; et al. The Gene Ontology Resource: 20 years and still GOing strong. Nucleic Acids Res. 2019, 47, D330–D338. [Google Scholar] [CrossRef] [Green Version]
- Jeiranikhameneh, M.; Moshiri, F.; Keyhan Falasafi, S.; Zomorodipour, A. Designing Signal Peptides for Efficient Periplasmic Expression of Human Growth Hormone in Escherichia coli. J. Microbiol. Biotechnol. 2017, 27, 1999–2009. [Google Scholar] [CrossRef] [Green Version]
- Tasaki, T.; Sriram, S.M.; Park, K.S.; Kwon, Y.T. The N-end rule pathway. Annu. Rev. Biochem. 2012, 81, 261–289. [Google Scholar] [CrossRef] [Green Version]
- Villanueva, E.; Martí-Solano, M.; Fillat, C. Codon optimization of the adenoviral fiber negatively impacts structural protein expression and viral fitness. Sci. Rep. 2016, 6, 27546. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guan, D.L.; Ma, L.B.; Khan, M.S.; Zhang, X.X.; Xu, S.Q.; Xie, J.Y. Analysis of codon usage patterns in Hirudinaria manillensis reveals a preference for GC-ending codons caused by dominant selection constraints. BMC Genom. 2018, 19, 542. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Lee, G.; Jeon, E.; Sohn, E.J.; Lee, Y.; Kang, H.; Lee, D.W.; Kim, D.H.; Hwang, I. The immediate upstream region of the 5′-UTR from the AUG start codon has a pronounced effect on the translational efficiency in Arabidopsis thaliana. Nucleic Acids Res. 2014, 42, 485–498. [Google Scholar] [CrossRef]
- Zhao, H.L.; Xia, Z.K.; Hua, Z.G.; Wei, W. Selectional versus mutational mechanism underlying genomic features of bacterial strand asymmetry: A case study in Clostridium acetobutylicum. Genet. Mol. Res. 2015, 14, 1911–1925. [Google Scholar] [CrossRef]
- Benson, D.; Cavanaugh, M.; Clark, K.; Karsch-Mizrachi, I.; Lipman, D.; Ostell, J.; Sayers, E. GenBank. Nucleic Acids Res. 2017, 45, D37–D42. [Google Scholar] [CrossRef] [Green Version]
- Kanehisa, M.; Goto, S.; Sato, Y.; Kawashima, M.; Furumichi, M.; Tanabe, M. Data, information, knowledge and principle: Back to metabolism in KEGG. Nucleic Acids Res. 2014, 42, D199–D205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kanehisa, M.; Sato, Y.; Kawashima, M.; Furumichi, M.; Tanabe, M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 2016, 44, D457–D462. [Google Scholar] [CrossRef] [Green Version]
- Altschul, S.F.; Madden, T.L.; Schäffer, A.A.; Zhang, J.; Zhang, Z.; Miller, W.; Lipman, D.J. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 1997, 25, 3389–3402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boratyn, G.; Camacho, C.; Cooper, P.; Coulouris, G.; Fong, A.; Ma, N.; Madden, T.; Matten, W.; McGinnis, S.; Merezhuk, Y.; et al. BLAST: A more efficient report with usability improvements. Nucleic Acids Res. 2013, 41, W29–W33. [Google Scholar] [CrossRef] [Green Version]
- Kinsella, R.; Kähäri, A.; Haider, S.; Zamora, J.; Proctor, G.; Spudich, G.; Almeida-King, J.; Staines, D.; Derwent, P.; Kerhornou, A.; et al. Ensembl BioMarts: A hub for data retrieval across taxonomic space. Database 2011, 2011, bar030. [Google Scholar] [CrossRef] [PubMed]
- Ruffier, M.; Kähäri, A.; Komorowska, M.; Keenan, S.; Laird, M.; Longden, I.; Proctor, G.; Searle, S.; Staines, D.; Taylor, K.; et al. Ensembl core software resources: Storage and programmatic access for DNA sequence and genome annotation. Database 2017, 2017, bax020. [Google Scholar] [CrossRef]
- Yates, A.; Beal, K.; Keenan, S.; McLaren, W.; Pignatelli, M.; Ritchie, G.R.; Ruffier, M.; Taylor, K.; Vullo, A.; Flicek, P. The Ensembl REST API: Ensembl Data for Any Language. Bioinformatics 2015, 31, 143–145. [Google Scholar] [CrossRef] [Green Version]
- Hung, J.H.; Weng, Z. Visualizing Genomic Annotations with the UCSC Genome Browser. Cold Spring Harb. Protoc. 2016, 2016, pdb.prot093062. [Google Scholar] [CrossRef]
- Haeussler, M.; Zweig, A.; Tyner, C.; Speir, M.; Rosenbloom, K.; Raney, B.; Lee, C.; Lee, B.; Hinrichs, A.; Gonzalez, J.; et al. The UCSC Genome Browser database: 2019 update. Nucleic Acids Res. 2019, 47, D853–D858. [Google Scholar] [CrossRef] [Green Version]
- Goecks, J.; Nekrutenko, A.; Taylor, J.; Team, G. Galaxy: A comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences. Genome Biol. 2010, 11, R86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tyurin, A.; Kabardaeva, K.; Gra, O.; Mustafaev, O.; Sadovskaya, N.; Pavlenko, O.; Goldenkova-Pavlova, I. Efficient Expression of a heterologous gene in plants depends on the nucleotide composition of mRNA’s 5’-region. Russ. J. Plant. Physiol. 2016, 63, 511–522. [Google Scholar] [CrossRef]
- Kozak, M. Circumstances and mechanisms of inhibition of translation by secondary structure in eucaryotic mRNAs. Mol. Cell. Biol. 1989, 9, 5134–5142. [Google Scholar] [CrossRef]
- Ikemura, T. Codon usage and tRNA content in unicellular and multicellular organisms. Mol. Biol. Evol. 1985, 2, 13–34. [Google Scholar] [CrossRef] [PubMed]
- Plotkin, J.; Kudla, G. Synonymous but not the same: The causes and consequences of codon bias. Nat. Rev. Genet. 2011, 12, 32–42. [Google Scholar] [CrossRef] [Green Version]
- Quax, T.; Claassens, N.; Söll, D.; van der Oost, J. Codon Bias as a Means to Fine-Tune Gene Expression. Mol. Cell. 2015, 59, 149–161. [Google Scholar] [CrossRef] [Green Version]
- Song, H.; Gao, H.; Liu, J.; Tian, P.; Nan, Z. Comprehensive analysis of correlations among codon usage bias, gene expression, and substitution rate in Arachis duranensis and Arachis ipaënsis orthologs. Sci. Rep. 2017, 7, 14853. [Google Scholar] [CrossRef] [Green Version]
- Lingemann, M.; Liu, X.; Surman, S.; Liang, B.; Herbert, R.; Hackenberg, A.; Buchholz, U.; Collins, P.; Munir, S. Attenuated Human Parainfluenza Virus Type 1 Expressing Ebola Virus Glycoprotein GP Administered Intranasally Is Immunogenic in African Green Monkeys. J. Virol. 2017, 91, e02469-16. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Y.; Zhao, W.M.; Wang, H.; Zhou, Y.B.; Luan, Y.; Qi, M.; Cheng, Y.Z.; Tang, W.; Liu, J.; Yu, H.; et al. Codon usage bias in Chlamydia trachomatis and the effect of codon modification in the MOMP gene on immune responses to vaccination. Biochem. Cell Biol. 2007, 85, 218–226. [Google Scholar] [CrossRef]
- Picardi, E.; Pesole, G. Computational methods for ab initio and comparative gene finding. Methods Mol. Biol. 2010, 609, 269–284. [Google Scholar] [CrossRef]
- König, S.; Romoth, L.; Gerischer, L.; Stanke, M. Simultaneous gene finding in multiple genomes. Bioinformatics 2016, 32, 3388–3395. [Google Scholar] [CrossRef] [Green Version]
- Zhou, T.; Gu, W.; Ma, J.; Sun, X.; Lu, Z. Analysis of synonymous codon usage in H5N1 virus and other influenza A viruses. Biosystems 2005, 81, 77–86. [Google Scholar] [CrossRef]
- Kim, N.; Lim, S.; Chae, H.; Park, Y. Complete mitochondrial genome of the Amur hedgehog Erinaceus amurensis (Erinaceidae) and higher phylogeny of the family Erinaceidae. Genet. Mol. Res. 2017, 16. [Google Scholar] [CrossRef]
- Kinkema, M.; Geijskes, J.; Delucca, P.; Palupe, A.; Shand, K.; Coleman, H.; Brinin, A.; Williams, B.; Sainz, M.; Dale, J. Improved molecular tools for sugar cane biotechnology. Plant Mol. Biol. 2014, 84, 497–508. [Google Scholar] [CrossRef] [PubMed]
- Chaney, J.; Clark, P. Roles for Synonymous Codon Usage in Protein Biogenesis. Annu. Rev. Biophys. 2015, 44, 143–166. [Google Scholar] [CrossRef] [PubMed]
- Tuller, T.; Carmi, A.; Vestsigian, K.; Navon, S.; Dorfan, Y.; Zaborske, J.; Pan, T.; Dahan, O.; Furman, I.; Pilpel, Y. An evolutionarily conserved mechanism for controlling the efficiency of protein translation. Cell 2010, 141, 344–354. [Google Scholar] [CrossRef] [Green Version]
- Whittle, C.; Extavour, C. Expression-Linked Patterns of Codon Usage, Amino Acid Frequency, and Protein Length in the Basally Branching Arthropod Parasteatoda tepidariorum. Genome Biol. Evol. 2016, 8, 2722–2736. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tian, J.; Yan, Y.; Yue, Q.; Liu, X.; Chu, X.; Wu, N.; Fan, Y. Predicting synonymous codon usage and optimizing the heterologous gene for expression in E. coli. Sci. Rep. 2017, 7, 9926. [Google Scholar] [CrossRef]
- Diament, A.; Pinter, R.; Tuller, T. Three-dimensional eukaryotic genomic organization is strongly correlated with codon usage expression and function. Nat. Commun. 2014, 5, 5876. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sadovskaya, N.; Mustafaev, O.; Tyurin, A.; Deyneko, I.; Goldenkova-Pavlova, I. JetGene—Online Database and Toolkit for an Analysis of Regulatory Regions or Nucleotide Contexts at Differently Translated Plants Transcripts. Biol. Life Sci. Forum 2021, 4, 98. https://doi.org/10.3390/IECPS2020-08624
Sadovskaya N, Mustafaev O, Tyurin A, Deyneko I, Goldenkova-Pavlova I. JetGene—Online Database and Toolkit for an Analysis of Regulatory Regions or Nucleotide Contexts at Differently Translated Plants Transcripts. Biology and Life Sciences Forum. 2021; 4(1):98. https://doi.org/10.3390/IECPS2020-08624
Chicago/Turabian StyleSadovskaya, Nataliya, Orkhan Mustafaev, Alexander Tyurin, Igor Deyneko, and Irina Goldenkova-Pavlova. 2021. "JetGene—Online Database and Toolkit for an Analysis of Regulatory Regions or Nucleotide Contexts at Differently Translated Plants Transcripts" Biology and Life Sciences Forum 4, no. 1: 98. https://doi.org/10.3390/IECPS2020-08624
APA StyleSadovskaya, N., Mustafaev, O., Tyurin, A., Deyneko, I., & Goldenkova-Pavlova, I. (2021). JetGene—Online Database and Toolkit for an Analysis of Regulatory Regions or Nucleotide Contexts at Differently Translated Plants Transcripts. Biology and Life Sciences Forum, 4(1), 98. https://doi.org/10.3390/IECPS2020-08624