Rice (Oryza sativa L.) Biofortification with Selenium: Enrichment Index and Interactions among Nutrients †
Abstract
:1. Introduction
2. Experiments
2.1. Experimental Fields
2.2. Analysis of Macro and Micronutrients Contents
2.3. Thousand Grains Weight and Colorimetry Analysis
2.4. Statistical Analysis
3. Results
3.1. Accumulation of Chemical Elements in Rice Grains
3.2. Grain Weight and Colorimetry Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Acknowledgments
Conflicts of Interest
References
- White, P.J. Selenium accumulation by plants. Ann. Bot. 2016, 117, 217–235. [Google Scholar] [CrossRef] [Green Version]
- Reis, A.; El-Ramady, H.; Santos, E.F.; Gratão, P.L.; Schomburg, L. Overview of selenium deficiency and toxicity worldwide: Affected areas, selenium-related health issues, and case studies. In Plant Ecophysiology; De Kok, L.J., Hakesford, M.J., Eds.; Springer International Publishing: Cham, Switzerland, 2017; Volume 11, pp. 209–230. [Google Scholar] [CrossRef]
- Zhao, F.; McGrath, S. Biofortification and phytoremediation. Curr. Opin. Plant Biol. 2009, 12, 373–380. [Google Scholar] [CrossRef]
- Boldrin, P.F.; Faquin, V.; Ramos, S.J.; Boldrin, K.V.F.; Ávila, F.W.; Guilherme, L.R.G. Soil and foliar application of selenium in rice biofortification. J. Food Compos. Anal. 2018, 31, 238–244. [Google Scholar] [CrossRef]
- White, P.; Broadley, M. Biofortification of crops with seven mineral elements often lacking in human diets—Iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol. 2009, 182, 49–84. [Google Scholar] [CrossRef]
- Fairweather-Tait, S.J.; Bao, Y.; Broadley, M.R.; Collings, R.; Ford, D.; Hesketh, E.; Hurst, R. Selenium in human health and disease. Antioxid. Redox. Signal. 2011, 14, 1337–1383. [Google Scholar] [CrossRef] [PubMed]
- Rayman, M.P.; Blundell-Pound, G.; Pastor-Barriuso, R.; Guallar, E.; Steinbrenner, H.; Stranges, S. A randomized trial of selenium supplementation and risk of type-2 diabetes, as assessed by plasma adiponectin. PLoS ONE 2012, 7, e045269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fordyce, F.M. Selenium deficiency and toxicity in the environment. In Essentials of Medical Geology; Selinus, O., Alloway, B., Centeno, J.A., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 375–416. [Google Scholar]
- Pérez-Corona, M.T.; Sanchez-Martınez, M.; Valderrama, M.J.; Rodriguez, M.E.; Camara, C.; Madrid, Y. Selenium biotransformation by Saccharomyces cerevisiae and Saccharomyces bayanus during white wine manufacture: Laboratory-scale experiments. Food Chem. 2011, 124, 1050–1105. [Google Scholar] [CrossRef]
- Ul-Huda, N.; Riaz, A.; Abbas, A.; Raza, S. Techniques for the Enrichment of Micronutrients in Crops through Biofortification: A Review. J. Adv. Biol. Biotechnol. 2018, 16, 1–7. [Google Scholar] [CrossRef]
- Sarwar, N.; Akhtar, M.; Kamran, M.A.; Imran, M.; Riaz, M.A.; Kamran, K.; Hussain, S. Selenium biofortification in food crops: Key mechanisms and future perspectives. J. Food Compos. Anal. 2020, 93, 103–615. [Google Scholar] [CrossRef]
- Kumar, M.; Bijo, A.J.; Baghel, R.S.; Reddy, C.R.; Jha, B. Selenium and spermine alleviate cadmium induced toxicity in the red seaweed Gracilaria dura by regulating antioxidants and DNA methylation. Plant Physiol. Biochem. 2012, 51, 129–138. [Google Scholar] [CrossRef]
- Cakmak, I. Enrichment of cereal grains with zinc: Agronomic or genetic biofortification? Plant Soil. 2008, 302, 1–17. [Google Scholar] [CrossRef]
- Williams, P.; Lombi, E.; Sun, G.; Scheckel, K.; Zhu, Y.; Feng, X.; Zhu, J.; Carey, A.; Adomako, E.; Lawgali, Y.; et al. Selenium Characterization in the Global Rice Supply Chain. Environ. Sci. 2009, 43, 6024–6030. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.D.; Wang, X.; Wong, Y.S. Generation of selenium-enriched rice with enhanced grain yield, selenium content and bioavailability through fertilisation with selenite. Food Chem. 2013, 141, 2385–2393. [Google Scholar] [CrossRef]
- Duan, M.; Sun, Z.; Shu, L.; Tan, Y.; Yu, D.; Sun, X.; Liu, R.; Li, Y.; Gong, S.; Yuan, D. Genetic Analysis of an Elite Super-Hybrid Rice Parent Using High-Density SNP Markers. Rice 2013, 6, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lidon, F.; Oliveira, K.; Galhano, C.; Guerra, M.; Ribeiro, M.; Pelica, J.; Pataco, I.; Ramalho, J.; Leitão, A.; Almeida, A.; et al. Selenium biofortification of rice through foliar application with selenite and selenate. Exp. Agric. 2018, 55, 528–542. [Google Scholar] [CrossRef]
- Lidon, F.; Oliveira, K.; Ribeiro, M.; Pelica, J.; Pataco, I.; Ramalho, J.; Leitão, A.; Almeida, A.; Campos, P.; Ribeiro-Barros, A.; et al. Selenium biofortification of rice grains and implications on macronutrients quality. J. Cereal. Sci. 2018, 81, 22–29. [Google Scholar] [CrossRef]
- White, P.J.; Broadley, M.R.; Bowen, H.C.; Johnson, S.E. Selenium and its relationship with sulfur. In Sulfur in Plants an Ecological Perspective; Springer: Dordrecht, The Netherlands, 2007; pp. 225–252. [Google Scholar]
- Cardoso, P.; Velu, G.; Singh, R.P.; Santos, J.P.; Carvalho, M.L.; Lourenço, V.M.; Lidon, F.C.; Reboredo, F.; Guerra, M. Localization and distribution of Zn and Fe in grains of biofortified bread wheat lines through micro- and triaxial- X-ray fluorescence spectrometry. Spectrochim. Acta B 2018, 141, 70–79. [Google Scholar] [CrossRef]
- Ramalho, J.C.; Pais, I.P.; Leitão, A.E.; Guerra, M.; Reboredo, F.H.; Máguas, C.M.; Carvalho, M.L.; Scotti-Campos, P.; Ribeiro-Barros, A.I.; Lidon, F.J.C.; et al. Can elevated air [CO2] conditions mitigate the predicted warming impact on the quality of coffee bean? Front. Plant Sci. 2018, 9, 287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geng, J.; Yu, M.A.; Tang, S.M. Screening enriched-selenium hybrid rice cultivars of Hainan Province. Chin. Agric. Sci. Bull. 2010, 26, 376–380. [Google Scholar]
- Zhang, L.X. Study on selenium rich ability of different rice varieties. Hortic. Seed 2011, 3, 111–113. [Google Scholar]
- Li, H.F.; McGrath, S.P.; Zhao, F.J. Selenium uptake, translocation and speciation in wheat supplied with selenate or selenite. New Phytol. 2008, 178, 92–102. [Google Scholar] [CrossRef]
- Lyons, G.H.; Genc, Y.; Stangoulis, J.C.; Palmer, L.T.; Graham, R.D. Selenium distribution in wheat grain, and the effect of postharvest processing on wheat selenium content. Biol. Trace. Elem. Res. 2005, 103, 155–168. [Google Scholar] [CrossRef]
- Fang, Y.; Wang, L.; Xin, Z.; Zhao, L.; An, X.; Hu, Q. Effect of Foliar Application of Zinc, Selenium, and Iron Fertilizers on Nutrients Concentration and Yield of Rice Grain in China. J. Agric. Food Chem. 2008, 56, 2079–2084. [Google Scholar] [CrossRef] [PubMed]
- Sors, T.G.; Ellis, D.R.; Salt, D.E. Selenium uptake, translocation assimilation and metabolic fate in plants. Photosynth. Res. 2005, 86, 373–389. [Google Scholar] [CrossRef] [PubMed]
- Fargasova, A.; Pastierova, J.; Svetkova, K. Effect of Se-metal pair combinations (Cd, Zn, Cu, Pb) on photosynthetic pigments production and metal accumulation in Synapis alba L. seedlings. Plant Soil Environ. 2006, 52, 8–15. [Google Scholar] [CrossRef] [Green Version]
- Lanning, S.; Siebenmorgen, T. Effects of preharvest nighttime air temperatures on whiteness of head rice. Cereal. Chem. 2013, 90, 218–222. [Google Scholar] [CrossRef] [Green Version]
Treatments (g Se.ha−1) | Zn | Ca | Fe | K | P | C | H | O | |
---|---|---|---|---|---|---|---|---|---|
mg.kg−1 | |||||||||
Na2SeO4 | 0 | 28.6 ± 1.43 a | 116.1 ± 5.80 a | 22.4 ± 1.12 a | 0.54 ± 0.03 a | 0.57 ± 0.03 a | 43.7 ± 2.18 a | 6.11 ± 0.31 a | 48.6 ± 2.43 a |
25 | 30.1 ± 1.50 a | 147.5 ± 7.38 a | 17.6 ± 0.88 a | 0.55 ± 0.03 a | 0.58 ± 0.03 a | 43.8 ± 2.19 a | 6.12 ± 0.31 a | 48.6 ± 2.43 a | |
100 | 26.1 ± 1.31 a | 175.1 ± 8.76 b | 18.1 ± 0.90 a | 0.64 ± 0.03 a | 0.66 ± 0.66 a | 43.7 ± 2.19 a | 6.12 ± 0.31 a | 48.6 ± 2.43 a | |
Na2SeO3 | 0 | 28.6 ± 1.43 a | 116.1 ± 5.80 c | 22.4 ± 1.12 b | 0.54 ± 0.03 b | 0.57 ± 0.03 b | 43.7 ± 2.18 a | 6.11 ± 0.31 a | 48.6 ± 2.43 a |
25 | 42.4 ± 2.12 b | 260.4 ± 13.02 b | 3.8 ± 1.74 a | 0.86 ± 0.04 a | 0.90 ± 0.04 a | 43.5 ± 2.17 a | 6.08 ± 0.30 a | 48.2 ± 2.41 a | |
100 | 23.3 ± 1.17 a | 150.5 ± 7.52 a | 13.3 ± 0.67 c | 0.50 ± 0.03 b | 0.53 ± 0.03 b | 43.8 ± 2.19 a | 6.13 ± 0.31 a | 48.7 ± 2.43 a |
Treatments (g Se.ha−1) | Paddy | Brown Rice | White Rice | |
---|---|---|---|---|
g.1000 g−1 | ||||
Na2SeO4 | Control | 31.56 ± 0.67 a | 26.98 ± 0.36 a | 23.63 ± 0.19 a |
25 | 31.53 ± 0.61 a | 27.25 ± 0.57 a | 23.44 ± 0.40 a | |
100 | 32.18 ± 1.71 a | 27.62 ± 0.69 a | 23.86 ± 0.44 a | |
Na2SeO3 | Control | 29.26 ± 0.52 a | 25.86 ± 0.63 a | 24.00 ± 0.81 a |
25 | 30.21 ± 0.51 a | 26.97 ± 0.27 a | 24.39 ± 0.14 a | |
100 | 30.66 ± 1.38 a | 25.99 ± 0.38 a | 23.66 ± 0.17 a |
Treatments (g Se.ha−1) | L* | C* | H* | ||
---|---|---|---|---|---|
Paddy | Na2SeO4 | 0 | 57.16 ± 0.90 a | 31.43 ± 0.59 a | 77.36 ± 0.66 a |
25 | 57.91 ± 0.93 a | 31.07 ± 0.78 a | 78.15 ± 0.33 a | ||
100 | 57.02 ± 0.99 a | 31.11 ± 0.48 a | 77.63 ± 0.38 a | ||
Na2SeO3 | 0 | 57.71 ± 1.24 a | 30.49 ± 0.44 a | 77.54 ± 0.44 a | |
25 | 56.94 ± 0.89 a | 30.01 ± 0.28 a | 77.96 ± 0.32 a | ||
100 | 57.78 ± 1.12 a | 31.30 ± 0.71 a | 77.09 ± 0.13 a | ||
Brown rice | Na2SeO4 | 0 | 70.31 ± 3.98 a | 20.66 ± 2.23 a | 84.16 ± 2.04 a |
25 | 69.53 ± 3.97 a | 20.18 ± 2.39 a | 84.14 ± 1.68 a | ||
100 | 69.70 ± 4.56 a | 20.46 ± 2.58 a | 84.19 ± 1.26 a | ||
Na2SeO3 | 0 | 69.07 ± 3.57 a | 20.80 ± 1.69 a | 84.50 ± 1.29 a | |
25 | 68.13 ± 4.97 a | 20.90 ± 2.61 a | 83.65 ± 1.51 a | ||
100 | 69.71 ± 4.14 a | 20.85 ± 1.94 a | 84.21 ± 1.39 a | ||
White rice | Na2SeO4 | 0 | 76.24 ± 0.10 a | 10.87 ± 0.68 a | 94.56 ± 1.11 a |
25 | 75.86 ± 0.45 a | 9.65 ± 0.68 a | 95.24 ± 0.98 a | ||
100 | 75.93 ± 0.63 a | 9.58 ± 0.64 a | 94.74 ± 0.97 a | ||
Na2SeO3 | 0 | 74.38 ± 1.57 a | 10.40 ± 0.85 a | 94.46 ± 1.24 a | |
25 | 76.16 ± 0.38 a | 10.46 ± 0.95 a | 94.30 ± 1.29 a | ||
100 | 76.06 ± 0.93 a | 10.48 ± 0.68 a | 93.65 ± 0.58 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marques, A.C.; Pessoa, C.C.; Coelho, A.R.F.; Luís, I.C.; Daccak, D.; Campos, P.S.; Simões, M.; Almeida, A.S.; Pessoa, M.F.; Reboredo, F.H.; et al. Rice (Oryza sativa L.) Biofortification with Selenium: Enrichment Index and Interactions among Nutrients. Biol. Life Sci. Forum 2021, 4, 39. https://doi.org/10.3390/IECPS2020-08701
Marques AC, Pessoa CC, Coelho ARF, Luís IC, Daccak D, Campos PS, Simões M, Almeida AS, Pessoa MF, Reboredo FH, et al. Rice (Oryza sativa L.) Biofortification with Selenium: Enrichment Index and Interactions among Nutrients. Biology and Life Sciences Forum. 2021; 4(1):39. https://doi.org/10.3390/IECPS2020-08701
Chicago/Turabian StyleMarques, Ana Coelho, Cláudia Campos Pessoa, Ana Rita F. Coelho, Inês Carmo Luís, Diana Daccak, Paula Scotti Campos, Manuela Simões, Ana Sofia Almeida, Maria F. Pessoa, Fernando H. Reboredo, and et al. 2021. "Rice (Oryza sativa L.) Biofortification with Selenium: Enrichment Index and Interactions among Nutrients" Biology and Life Sciences Forum 4, no. 1: 39. https://doi.org/10.3390/IECPS2020-08701
APA StyleMarques, A. C., Pessoa, C. C., Coelho, A. R. F., Luís, I. C., Daccak, D., Campos, P. S., Simões, M., Almeida, A. S., Pessoa, M. F., Reboredo, F. H., Guerra, M., Leitão, R. G., Ramalho, J. C., Marques, P., Silva, M. M., Legoinha, P., Pais, I. P., & Lidon, F. (2021). Rice (Oryza sativa L.) Biofortification with Selenium: Enrichment Index and Interactions among Nutrients. Biology and Life Sciences Forum, 4(1), 39. https://doi.org/10.3390/IECPS2020-08701