Enhanced Performance of Endophytic Bacillus subtilis in Conjunction with Salicylic Acid Meliorated Simultaneous Drought and Fusarium Root Rot Stresses in Triticum aestivum L. †
Abstract
:1. Introduction
2. Experiments
3. Results and Discussion
3.1. Characteristics and Properties of the Tested Bacillus subtilis 10-4 Strain
3.1.1. Some Plant Growth-Promoting (PGP) and Physio-Biochemical Properties
3.1.2. The Ability of B. subtilis 10-4 to Colonize Internal Wheat Tissues
3.1.3. Biocontrol Activity of B. subtilis 10-4 Cells, Metabolites, and Lipopeptides against Fusarium spp.
3.2. Effect of B. subtilis 10-4 and SA on Wheat Growth under Drought, Fusarium Infection, and a Combination of These Stresses
3.3. Changes in the Level of Lipid Peroxidation (MDA) and Proline (Pro) Content in Wheat Plants Pre-Treated with B. subtilis 10-4, SA, and B. subtilis 10-4 + SA under Combined Drought and Fusarium Infection
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SA | Salicylic acid |
LP | Lipopeptide |
FRR | Fusarium root rot |
MDA | Malondialdehyde |
Pro | Proline |
References
- Lastochkina, O.; Aliniaeifard, S.; Kalhor, M.S.; Yuldashev, R.; Pusenkova, L.; Garipova, S. Plant growth promoting bacteria—Biotic strategy to cope with abiotic stresses in wheat. In Wheat Production in Changing Environments: Management, Adaptation and Tolerance; Hasanuzzaman, M., Nahar, K., Hossain, A., Eds.; Springer: Singapore, 2019; Chapter 23; pp. 579–614. [Google Scholar]
- Juroszek, P.; von Tiedemann, A. Climate change and potential future risks through wheat diseases: A review. Eur. J. Plant Pathol. 2013, 136, 21–33. [Google Scholar] [CrossRef] [Green Version]
- Afzal, F.; Chaudhari, K.S.; Gul, A.; Farooq, A.; Ali, H.; Nisar, S.; Sarfraz, B.; Shehzadi, K.J.; Mujeeb-Kaziet, A. Bread Wheat (Triticum aestivum L.) under biotic and abiotic stresses: An overview. In Crop Production and Global Environmental Issues; Hakeem, K., Ed.; Springer: Cham, Switzerland, 2015; pp. 293–317. [Google Scholar]
- Lastochkina, O. Bacillus subtilis-mediated abiotic stress tolerance in plants. In Bacilli and Agrobiotechnology: Phytostimulation and Biocontrol; Islam, M.T., Rahman, M.M., Pandey, P., Boehme, M.H., Haesaert, G., Eds.; Springer Nature: Bremgarten, Switzerland, 2019; Volume 2, Chapter 6; pp. 97–133. [Google Scholar]
- Shakirova, F.M.; Avalbaev, A.M.; Bezrukova, M.V.; Fatkhutdinova, R.A.; Maslennikova, D.R.; Yuldashev, R.A.; Allagulova, C.R.; Lastochkina, O.V. Hormonal intermediates in the protective action of exogenous phytohormones in wheat plants under salinity: A case study on wheat. In Phytohormones and Abiotic Stress Tolerance in Plants; Khan, N., Nazar, R., Iqbal, N., Anjum, N., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 185–228. [Google Scholar]
- Rivas-San Vicente, M.; Plasencia, J. Salicylic acid beyond defence: Its role in plant growth and development. J. Exp. Bot. 2011, 62, 3321–3338. [Google Scholar] [CrossRef] [Green Version]
- Lastochkina, O.; Pusenkova, L.; Yuldashev, R.; Babaev, M.; Garipova, S.; Blagova, D.; Khairullin, R.; Aliniaeifard, S. Effects of Bacillus subtilis on some physiological and biochemical parameters of Triticum aestivum L. (wheat) under salinity. Plant Physiol. Biochem. 2017, 121, 80–88. [Google Scholar] [CrossRef] [PubMed]
- Netrusov, A.I.; Egorova, M.A.; Zakharchuk, L.M. Praktikum Po Mikrobiologii (A Practical Course in Microbiology); Tsentr “Akademiya”: Moscow, Russia, 2005. [Google Scholar]
- Mokronosov, A.T. Small Workshop on Plant Physiology; Moscow State University: Moscow, Russia, 1994; 184p. [Google Scholar]
- Bates, L.S.; Waldern, R.P.; Teare, D. Rapid determination of free proline for water stress studies. Plant Soil. 1973, 39, 205–207. [Google Scholar] [CrossRef]
- Heath, R.L.; Packer, L. Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys. 1968, 125, 189–198. [Google Scholar] [CrossRef]
- Malik, D.K.; Sindhu, S.S. Production of indole acetic acid by Pseudomonas sp.: Effect of coinoculation with Mesorhizobium sp. Cicer on nodulation and plant growth of chickpea (Cicer arietinum). Physiol. Mol. Biol. Plants 2011, 17, 25–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pikovskaya, R.I. Mobilization of phosphorus in soil in connection with vital activity of some microbial species. Mikrobiologiya 1948, 17, 362–370. [Google Scholar]
- Umarov, M.M. Associative Nitrogen Fixation; Moscow State University: Moscow, Russia, 1986; 136p. [Google Scholar]
- Schwyn, B.; Neilands, J.B. Universal chemical assay for the detection and determination of siderophores. Anal. Biochem. 1987, 160, 47–56. [Google Scholar] [CrossRef]
- Toral, L.; Rodríguez, M.; Béjar, V.; Sampedro, I. Antifungal activity of lipopeptides from Bacillus XT1 CECT 8661 against Botrytis cinerea. Front. Microbiol. 2018, 9, 1315. [Google Scholar] [CrossRef] [PubMed]
- Pandey, P.K.; Singh, M.C.; Singh, S.S.; Kumar, M.; Pathak, M.; Shakywar, R.C.; Pandey, A.K. Inside the plants: Endophytic bacteria and their functional attributes for plant growth promotion. Int. J. Curr. Microbiol. App. Sci. 2017, 6, 11–21. [Google Scholar] [CrossRef]
- Sessitsch, A.; Hardoim, P.; Döring, J.; Weilharter, A.; Krause, A.; Woyke, T.; Mitter, B.; Hauberg-Lotte, L.; Friedrich, F.; Rahalkar, M.; et al. Functional characteristics of an endophyte community colonizing rice roots as revealed by metagenomic analysis. Mol. Plant Microbe Interact. 2012, 25, 28–36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mitter, B.; Pfaffenbichler, N.; Flavell, R.; Compant, S.; Antonielli, L.; Petric, A.; Berninger, T.; Naveed, M.; Sheibani-Tezerji, R.; von Maltzahn, G.; et al. A new approach to modify plant microbiomes and traits by introducing beneficial bacteria at flowering into progeny seeds. Front. Microbiol. 2017, 8, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kolupaev, Y.E.; Yastreb, T.O. Physiological functions of nonenzymatic antioxidants of plants. Bull. Kharkiv Natl. Agrar. Univ. Ser. Biol. 2015, 2, 6–25. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lastochkina, O.; Garshina, D.; Ibragimov, A. Enhanced Performance of Endophytic Bacillus subtilis in Conjunction with Salicylic Acid Meliorated Simultaneous Drought and Fusarium Root Rot Stresses in Triticum aestivum L. Biol. Life Sci. Forum 2021, 4, 20. https://doi.org/10.3390/IECPS2020-08778
Lastochkina O, Garshina D, Ibragimov A. Enhanced Performance of Endophytic Bacillus subtilis in Conjunction with Salicylic Acid Meliorated Simultaneous Drought and Fusarium Root Rot Stresses in Triticum aestivum L. Biology and Life Sciences Forum. 2021; 4(1):20. https://doi.org/10.3390/IECPS2020-08778
Chicago/Turabian StyleLastochkina, Oksana, Darya Garshina, and Almaz Ibragimov. 2021. "Enhanced Performance of Endophytic Bacillus subtilis in Conjunction with Salicylic Acid Meliorated Simultaneous Drought and Fusarium Root Rot Stresses in Triticum aestivum L." Biology and Life Sciences Forum 4, no. 1: 20. https://doi.org/10.3390/IECPS2020-08778
APA StyleLastochkina, O., Garshina, D., & Ibragimov, A. (2021). Enhanced Performance of Endophytic Bacillus subtilis in Conjunction with Salicylic Acid Meliorated Simultaneous Drought and Fusarium Root Rot Stresses in Triticum aestivum L. Biology and Life Sciences Forum, 4(1), 20. https://doi.org/10.3390/IECPS2020-08778