Next Article in Journal
Green Leaf Volatiles: Airborne Signals That Protect against Biotic and Abiotic Stresses
Previous Article in Journal
Assessment of Phytochemicals and Antioxidant Properties of Root Extracts of Rubia cordifolia L. in Different Solvent Systems
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Abstract

Use of Molecular Dynamics to Decipher the Binding of Salicylic Acid to Proteins. Example of Arabidopsis Thaliana Chloroplastic GAPDH-A1 †

1
IEES-Paris (UMR_7618)—Institut d’écologie et des sciences de l’environnement de Paris, CNRS UMR 7583, Université Paris-Est Créteil, Sorbonne Université, F-94010 Paris, France
2
Plateforme d’interactions moléculaires, CNRS-FR3631, Institut de Biologie Paris Seine (IBPS), Sorbonne Université, CEDEX 05, F-75252 Paris, France
3
V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Sciences of Ukraine, 02094 Kyiv, Ukraine
4
LISA (UMR 7583)—Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA), CNRS UMR 7583, Université Paris-Est Créteil, Université de Paris, Institut Pierre Simon Laplace (IPSL), F-94010 Créteil, France
*
Author to whom correspondence should be addressed.
Presented at the 1st International Electronic Conference on Plant Science, 1–15 December 2020; Available online: https://iecps2020.sciforum.net/.
Biol. Life Sci. Forum 2021, 4(1), 103; https://doi.org/10.3390/IECPS2020-08637
Published: 1 December 2020
(This article belongs to the Proceedings of The 1st International Electronic Conference on Plant Science)

Abstract

:
Salicylic acid (SA) has an essential role in the responses of plants to pathogens. SA initiates defense signaling cascades by binding to proteins. NPR1 is a transcriptional coactivator and is a key target of SA binding. Many other proteins have been shown to bind SA. Among these proteins are important enzymes of primary metabolism. Here, we describe that the A1 isomer of chloroplast glyceraldehyde 3-phosphate dehydrogenase (GAPA1) from Arabidopsis thaliana binds SA, as shown in surface plasmon resonance experiments. Additionally, we show that SA inhibits its GAPDH activity in vitro. To gain an insight into the underlying molecular interactions and binding mechanism, we combined in silico molecular docking experiments and molecular dynamics simulations on the free protein and protein–ligand complex. The molecular docking analysis led to the identification of two putative binding pockets for SA. A simulation in water of the complex between SA and the protein allowed us to determine that only one pocket, a surface cavity around Asn35, would efficiently bind SA in the presence of a solvent. The importance of this is further supported through experimental biochemical assays. Indeed, mutating GAPA1 Asn35 into Gly or Arg81 into Leu strongly diminished the ability of the enzyme to bind SA. The very same cavity is responsible for the binding of NADP+ to GAPA1. NADH inhibited, in a dose-response manner, the binding of SA to GAPA1, validating our data. The use of the methodology to study SA binding to other proteins will be discussed at the end of the talk.

Supplementary Materials

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Pokotylo, I.; Hellal, D.; Bouceba, T.; Hernandez-Martinez, M.-A.; Kravets, V.; Kleiner, I.; Ruelland, E. Use of Molecular Dynamics to Decipher the Binding of Salicylic Acid to Proteins. Example of Arabidopsis Thaliana Chloroplastic GAPDH-A1. Biol. Life Sci. Forum 2021, 4, 103. https://doi.org/10.3390/IECPS2020-08637

AMA Style

Pokotylo I, Hellal D, Bouceba T, Hernandez-Martinez M-A, Kravets V, Kleiner I, Ruelland E. Use of Molecular Dynamics to Decipher the Binding of Salicylic Acid to Proteins. Example of Arabidopsis Thaliana Chloroplastic GAPDH-A1. Biology and Life Sciences Forum. 2021; 4(1):103. https://doi.org/10.3390/IECPS2020-08637

Chicago/Turabian Style

Pokotylo, Igor, Denis Hellal, Tahar Bouceba, Miguel-Angel Hernandez-Martinez, Volodymyr Kravets, Isabelle Kleiner, and Eric Ruelland. 2021. "Use of Molecular Dynamics to Decipher the Binding of Salicylic Acid to Proteins. Example of Arabidopsis Thaliana Chloroplastic GAPDH-A1" Biology and Life Sciences Forum 4, no. 1: 103. https://doi.org/10.3390/IECPS2020-08637

APA Style

Pokotylo, I., Hellal, D., Bouceba, T., Hernandez-Martinez, M. -A., Kravets, V., Kleiner, I., & Ruelland, E. (2021). Use of Molecular Dynamics to Decipher the Binding of Salicylic Acid to Proteins. Example of Arabidopsis Thaliana Chloroplastic GAPDH-A1. Biology and Life Sciences Forum, 4(1), 103. https://doi.org/10.3390/IECPS2020-08637

Article Metrics

Back to TopTop