Isolation and Characterization of Agricultural Soil Bacteria with Biotechnological and Biological Control Potential Applications †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Isolation
2.2. Biofertilization Activity and Exoenzyme Production Tests
2.3. Biological Control Tests
3. Results
3.1. Bacterial Identification
3.2. Biofertilization Activity and Exoenzyme Production Tests
3.3. Biological Control Tests
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tudi, M.; Daniel Ruan, H.; Wang, L.; Lyu, J.; Sadler, R.; Connell, D.; Chu, C.; Phung, D.T. Agriculture Development, Pesticide Application and Its Impact on the Environment. Int. J. Environ. Res. Public Health 2021, 18, 1112. [Google Scholar] [CrossRef] [PubMed]
- Meena, R.S.; Kumar, S.; Datta, R.; Lal, R.; Vijayakumar, V.; Brtnicky, M.; Sharma, M.P.; Yadav, G.S.; Jhariya, M.K.; Jangir, C.K.; et al. Impact of Agrochemicals on Soil Microbiota and Management: A Review. Land 2020, 9, 34. [Google Scholar] [CrossRef]
- Thomas, L.; Singh, I. Microbial Biofertilizers: Types and Applications. In Biofertilizers for Sustainable Agriculture and Environment; Giri, B., Prasad, R., Wu, Q.S., Varma, A., Eds.; Springer: Cham, Switzerland, 2019; Volume 55, pp. 1–20. [Google Scholar]
- Umesha, S.; Singh, P.K.; Singh, R.P. Microbial Biotechnology and Sustainable Agriculture. In Biotechnology for Sustainable Agriculture. Emerging Approaches and Strategies; Elsevier: Amsterdam, The Netherlands, 2018; pp. 185–205. [Google Scholar]
- Maiwald, M. Broad-Range PCR for Detection and Identification of Bacteria. In Molecular Microbiology: Diagnostic Principles and Practice; Persing, D.H., Tenover, F.C., Tang, Y.W., Nolte, F.S., Hayden, R.T., van Belkum, A., Eds.; American Society for Microbiology: Washintong, DC, USA, 2011; pp. 491–505. [Google Scholar]
- Pérez-Díaz, M.; Biosca, E.G.; Álvarez, B. Looking for Beneficial Applications of Environmental Bacteria from an Olive Grove for a Microbe-Based Sustainable Agriculture. In Global Progress in Applied Microbiology: A Multidisciplinary Approach; Méndez-Vilas, A., Ed.; Formatex Research Center: Badajoz, Spain, 2018; pp. 64–68. [Google Scholar]
- Esteban-Herrero, G.; Álvarez, B.; Santander, R.D.; Biosca, E.G. Screening for Novel Beneficial Environmental Bacteria for an Antagonism-Based Erwinia amylovora Biological Control. Microorganisms 2023, 11, 1795. [Google Scholar] [CrossRef] [PubMed]
- Yuan, H.; Shi, B.; Wang, L.; Huang, T.; Zhou, Z.; Hou, H.; Tu, H. Isolation and Characterization of Bacillus velezensis Strain P2-1 for Biocontrol of Apple Postharvest Decay Caused by Botryosphaeria dothidea. Front. Microbiol. 2022, 12, 808938. [Google Scholar] [CrossRef] [PubMed]
- Tahir, H.A.S.; Gu, Q.; Wu, H.; Raza, W.; Safdar, A.; Huang, Z.; Rajer, F.U.; Gao, X. Effect of Volatile Compounds Produced by Ralstonia solanacearum on Plant Growth Promoting and Systemic Resistance Inducing Potential of Bacillus Volatiles. BMC Plant Biol. 2017, 17, 133. [Google Scholar] [CrossRef] [PubMed]
- Suman, J.; Rakshit, A.; Ogireddy, S.D.; Singh, S.; Gupta, C.; Chandrakala, J. Microbiome as a Key Player in Sustainable Agriculture and Human Health. Front. Soil Sci. 2022, 2, 821589. [Google Scholar] [CrossRef]
Biofertilization Tests | Bacillus spp. | Brevibacterium spp. | Enterococcus spp. | Other Genera | Global Isolates (%) | |
---|---|---|---|---|---|---|
Phosphate solubilization | not detected | not detected | detected | detected/not detected | 15 | |
Siderophore production | detected | detected | detected | detected/not detected | 49 | |
Exoenzyme production tests | ||||||
Proteolytic activity | detected | detected | detected | detected/not detected | 70 | |
Gelatinase activity | detected | detected | detected | detected | ||
Lipolytic activity | (on Tween 20) | detected | not detected | not detected | detected | 45 |
(on Tween 80) | detected | not detected | not detected | detected/not detected | ||
Amylolytic activity | detected | not detected | not detected | not detected | 23 | |
DNase activity | detected | detected | not detected | detected/not detected | 24 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meza-Manzaneque, B.; Pérez-Díaz, M.; Biosca, E.G.; Álvarez, B. Isolation and Characterization of Agricultural Soil Bacteria with Biotechnological and Biological Control Potential Applications. Biol. Life Sci. Forum 2024, 31, 28. https://doi.org/10.3390/ECM2023-16683
Meza-Manzaneque B, Pérez-Díaz M, Biosca EG, Álvarez B. Isolation and Characterization of Agricultural Soil Bacteria with Biotechnological and Biological Control Potential Applications. Biology and Life Sciences Forum. 2024; 31(1):28. https://doi.org/10.3390/ECM2023-16683
Chicago/Turabian StyleMeza-Manzaneque, Beatriz, Marta Pérez-Díaz, Elena G. Biosca, and Belén Álvarez. 2024. "Isolation and Characterization of Agricultural Soil Bacteria with Biotechnological and Biological Control Potential Applications" Biology and Life Sciences Forum 31, no. 1: 28. https://doi.org/10.3390/ECM2023-16683
APA StyleMeza-Manzaneque, B., Pérez-Díaz, M., Biosca, E. G., & Álvarez, B. (2024). Isolation and Characterization of Agricultural Soil Bacteria with Biotechnological and Biological Control Potential Applications. Biology and Life Sciences Forum, 31(1), 28. https://doi.org/10.3390/ECM2023-16683