A Study on the Antimicrobial Activity of Algae Extract: The Fucales Order Case †
Abstract
:1. Introduction
2. Discussion
Extraction Technique | Microorganism Tested | Major Results | Ref. |
---|---|---|---|
Bifurcaria bifurcata | |||
Sequential extraction (RT); (Hx, MeOH, Wt) 1:20 (m/v) | Epidermophyton floccosum, Microsporum canis, Microsporum gypseum, Trichophyton mentagrophytes var. interdigitale; Thrichophyton rubrum, Trichophyton verrucosum. | MeOH extracts demonstrated antifungal capacity against human dermatophyte fungi; the antifungal activity seems to be seasonally/geographically influenced | [14] |
Maceration 50 °C, 24 h EtOH, AcO, EtAc, Chl and Hx | Staphylococcus aureus, Staphylococcus epidermidis, Bacillus cereus, Pseudomonas aeruginosa, Salmonella enteritidis, Escherichia coli | Strong inhibition activity; all extracts were active against all microorganisms except E. coli | [11] |
Maceration RT 60 min Hx–IPr-W (10:80:10) | Bacillus cereus; Bacillus subtilis; Geobacillus stearothermophilus; Listeria monocytogenes; Staphylococcus aureus; Staphylococcus haemolyticus; | MICs values between 0.9 mg/mL (B. cereus) and >19.9 (L. monocytogenes) spatial and seasonal variations; inconsistencies between disc diffusion and broth dilution methods | [12] |
Maceration RT, 4 days MeOH | Penicillium digitatum, Botrytis cinerea | Active against both microorganisms in the four harvest seasons tested | [15] |
Maceration 48 h, RT, +30 min. ultrasonication | Penicillium digitatum, Penicillium expansum, Penicillium italicum | Strong antifungal activity; effective in reducing the mycelial growth. | [13] |
maceration RT 48 h methanol (90%) | E. coli, Staphylococcus aureus, Bacillo subtilis, P. aeruginosa | MICs from 0.11 to 1.87 mg/mL | [13] |
Sequential extraction MeOH; DCM/MeOH (50:50), DCM | Escherichia coli, Proteus mirabilis, Staphylococcus aureus CECT 976, Staphylococcus aureus ATCC 25923 | MIC of 0.02 µg/mL against P. mirabilis, 0.3 µg/mL against S. aureus CECT 976 and 1.8 µg/mL against the S. aureus ATCC 25923. | [16] |
Fucus spiralis | |||
Maceration RT, 4 days MeOH | Penicillium digitatum, Botrytis cinerea | Algae harvest in summer was active against both fungal species | [15] |
Maceration RT: overnigth DCM:MeOH (1:1) PE EtAc n-Hx | Staphylococcus aureus, Bacillus subtilis, Bacillus cereus, Escherichia coli, Proteus mirabilis, Mucor mucedo, Trichophyton mentagrophytes, Aspergilus niger. Candida albicans, Penicillium italicum | The crude extract and fractions were active against all tested microbes; the best result was obtained with the lipidic fraction | [17] |
Maceration 50°C, 24 h EtOH, AcO, EtAc, Chl and Hx, alga 0.03 g per mL of solvent | Staphylococcus aureus, Staphylococcus epidermidis, Bacillus cereus, Pseudomonas aeruginosa. Salmonella enteritidis Escherichia coli | Acetonic extract was the most active | [11] |
Sequential extraction Hx; EtAc, EtOH/Maceration EtOH, W/Shoxleth EtOH (frations W, Dieth, EtAc) | Staphylococcus epidermidis, Cutibacterium acnes, Malassezia furfur | The concentration used (1 mg/mL) is not effective against the studied microorganisms | [18] |
Maceration AcO:W (7:3) and purification to obtain phlorotannins | Epidermophyton floccosum, Trichophyton rubrum, Trichophyton mentagrophytes, Microsporum canis and Microsporum gypseum | MIC values raking from 7.8 to 31.3 mg/mL against skin- and nail-isolated fungus | [19] |
Sequential extraction MeOH, DCM/MeOH (50:50)/ DCM | Escherichia coli, Proteus mirabilis, Staphylococcus aureus CECT 976, Staphylococcus aureus, ATCC 25923 | MIC of 3.6 µg/mL against P. mirabilis, 2.7 µg/mL against S. aureus CECT 976, and 10.65 µg/mL against the S. aureus ATCC 25923 | [16] |
Ascophyllum nodosum | |||
Maceration RT 30 min MeOH:W (1:1) | Escherichia coli | Ascophyllum nodosum revealed antioxidant and antimicrobial capacity | [20] |
Shoxleth ACO 6 h | Escherichia coli | Antimicrobial effect against E. coli in the first 6 h | [21] |
Maceration AcO:W (7:3) 3 h RT and purification solid-phase extraction (SPE) | Escherichia coli, O157:H7 Salmonella agonaStreptococcus. suis | Mics of raking from 0.78 to 1.56 mg/mL | [6] |
Maceration 50 °C, 24 h EtOH, AcO, EtAc, Chl and Hex | Staphylococcus aureus, Staphylococcus epidermidis, Bacillus cereus, Pseudomonas aeruginosa, Salmonella enteritidis, Escherichia coli | The ethanolic extract was the most active | [11] |
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hakim, M.M.; Patel, I.C. A Review on Phytoconstituents of Marine Brown Algae. Futur. J. Pharm. Sci. 2020, 6, 129. [Google Scholar] [CrossRef]
- Li, Y.; Zheng, Y.; Zhang, Y.; Yang, Y.; Wang, P.; Imre, B.; Wong, A.C.Y.; Hsieh, Y.S.Y.; Wang, D. Brown Algae Carbohydrates: Structures, Pharmaceutical Properties, and Research Challenges. Mar. Drugs 2021, 19, 620. [Google Scholar] [CrossRef] [PubMed]
- Catarino, M.D.; Pires, S.M.G.; Silva, S.; Costa, F.; Braga, S.S.; Pinto, D.C.G.A.; Silva, A.M.S.; Cardoso, S.M. Overview of Phlorotannins’ Constituents in Fucales. Mar. Drugs 2022, 20, 754. [Google Scholar] [CrossRef] [PubMed]
- Pais, A.C.S.; Saraiva, J.A.; Rocha, S.M.; Silvestre, A.J.D.; Santos, S.A.O. Current Research on the Bioprospection of Linear Diterpenes from Bifurcaria bifurcata: From Extraction Methodologies to Possible Applications. Mar. Drugs 2019, 17, 556. [Google Scholar] [CrossRef] [PubMed]
- Kumaran, S.; Deivasigamani, B.; Alagappan, K.; Sakthivel, M.; Karthikeyan, R. Antibiotic Resistant Esherichia Coli Strains from Seafood and Its Susceptibility to Seaweed Extracts. Asian Pac. J. Trop. Med. 2010, 3, 977–981. [Google Scholar] [CrossRef]
- Ford, L.; Stratakos, A.C.; Theodoridou, K.; Dick, J.T.A.A.; Sheldrake, G.N.; Linton, M.; Corcionivoschi, N.; Walsh, P.J. Polyphenols from Brown Seaweeds as a Potential Antimicrobial Agent in Animal Feeds. ACS Omega 2020, 5, 9093–9103. [Google Scholar] [CrossRef]
- Silva, A.; Silva, S.A.; Lourenço-Lopes, C.; Jimenez-Lopez, C.; Carpena, M.; Gullón, P.; Fraga-Corral, M.; Domingues, V.F.; Barroso, M.F.; Simal-Gandara, J.; et al. Antibacterial Use of Macroalgae Compounds against Foodborne Pathogens. Antibiotics 2020, 9, 712. [Google Scholar] [CrossRef]
- Smith, J.; Fratamico, P. Escherichia coli as Other Enterobacteriaceae: Food Poisoning and Health Effects. In The Encyclopedia of Food; Caballero, B., Finglas, P., Toldra, F., Eds.; Oxford Academic: Oxford, UK, 2016; pp. 539–544. [Google Scholar]
- Miranda, J.M.; Zhang, B.; Barros-Velázquez, J.; Aubourg, S.P. Preservative Effect of Aqueous and Ethanolic Extracts of the Macroalga Bifurcaria bifurcata on the Quality of Chilled Hake (Merluccius merluccius). Molecules 2021, 26, 3774. [Google Scholar] [CrossRef]
- Pisoschi, A.M.; Pop, A.; Georgescu, C.; Turcuş, V.; Olah, N.K.; Mathe, E. An Overview of Natural Antimicrobials Role in Food. Eur. J. Med. Chem. 2018, 143, 922–935. [Google Scholar] [CrossRef]
- Silva, A.; Rodrigues, C.; Garcia-Oliveira, P.; Lourenço-Lopes, C.; Silva, S.A.; Garcia-Perez, P.; Carvalho, A.P.; Domingues, V.F.; Barroso, M.F.; Delerue-Matos, C.; et al. Screening for Bioactive Properties on Brown Algae from the Northwest Iberian Peninsula. Foods 2021, 10, 1915. [Google Scholar] [CrossRef]
- Rubiño, S.; Peteiro, C.; Aymerich, T.; Hortós, M. Brown Macroalgae (Phaeophyceae): A Valuable Reservoir of Antimicrobial Compounds on Northern Coast of Spain. Mar. Drugs 2022, 20, 775. [Google Scholar] [CrossRef] [PubMed]
- Fayzi, L.; Askarne, L.; Boufous, E.H.; Cherifi, O.; Cherifi, K. Antioxidant and Antifungal Activity of Some Moroccan Seaweeds Against Three Postharvest Fungal Pathogens. Asian J. Plant Sci. 2022, 21, 328–338. [Google Scholar] [CrossRef]
- Carvalho, G.L.; Silva, R.; Gonçalves, J.M.; Batista, T.M.; Pereira, L. Extracts of the Seaweed Bifurcaria Bifurcata Display Antifungal Activity against Human Dermatophyte Fungi. J. Oceanol. Limnol. 2019, 37, 848–854. [Google Scholar] [CrossRef]
- Bahammou, N.; Raja, R.; Carvalho, I.S.; Cherifi, K.; Bouamama, H.; Cherifi, O. Assessment of the Antifungal and Antioxidant Activities of the Seaweeds Collected from the Coast of Atlantic Ocean, Morocco. Moroccan J. Chem. 2021, 9, 639–648. [Google Scholar] [CrossRef]
- Benhniya, B.; Lakhdar, F.; Rezzoum, N.; Etahiri, S. GC/MS Analysis and Antibacterial Potential of Macroalgae Extracts Harvested on Moroccan Atlantic Coast. Egypt. J. Chem. 2022, 65, 171–179. [Google Scholar] [CrossRef]
- Grozdanić, N.; Đuričić, I.; Kosanić, M.; Zdunić, G.; Šavikin, K.; Etahiri, S.; Assobhei, O.; Benba, J.; Petović, S.; Matić, I.Z.; et al. Fucus spiralis Extract and Fractions: Anticancer and Pharma- Cological Potentials. J. BOUN 2020, 25, 1219–1229. [Google Scholar]
- Freitas, R.; Martins, A.; Silva, J.; Alves, C.; Pinteus, S.; Alves, J.; Teodoro, F.; Ribeiro, H.M.; Gonçalves, L.; Petrovski, Ž.; et al. Highlighting the Biological Potential of the Brown Seaweed Fucus Spiralis for Skin Applications. Antioxidants 2020, 9, 611. [Google Scholar] [CrossRef] [PubMed]
- Lopes, G.; Pinto, E.; Andrade, P.B.; Valentão, P. Antifungal Activity of Phlorotannins against Dermatophytes and Yeasts: Approaches to the Mechanism of Action and Influence on Candida Albicans Virulence Factor. PLoS ONE 2013, 8, e72203. [Google Scholar] [CrossRef]
- Frazzini, S.; Scaglia, E.; Dell’Anno, M.; Reggi, S.; Panseri, S.; Giromini, C.; Lanzoni, D.; Sgoifo Rossi, C.A.; Rossi, L. Antioxidant and Antimicrobial Activity of Algal and Cyanobacterial Extracts: An In Vitro Study. Antioxidants 2022, 11, 992. [Google Scholar] [CrossRef]
- Dell’Anno, M.; Sotira, S.; Rebucci, R.; Reggi, S.; Castiglioni, B.; Rossi, L. In Vitro Evaluation of Antimicrobial and Antioxidant Activities of Algal Extracts. Ital. J. Anim. Sci. 2020, 19, 103–113. [Google Scholar] [CrossRef]
- Vicente, T.F.L.; Félix, C.; Félix, R.; Valentão, P.; Lemos, M.F.L. Seaweed as a Natural Source against Phytopathogenic Bacteria. Mar. Drugs 2022, 21, 23. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, A.; Carpena, M.; Morais, S.L.; Grosso, C.; Cassani, L.; Chamorro, F.; Barroso, M.F.; Simal-Gandara, J.; Prieto, M.A. A Study on the Antimicrobial Activity of Algae Extract: The Fucales Order Case. Biol. Life Sci. Forum 2024, 31, 26. https://doi.org/10.3390/ECM2023-16695
Silva A, Carpena M, Morais SL, Grosso C, Cassani L, Chamorro F, Barroso MF, Simal-Gandara J, Prieto MA. A Study on the Antimicrobial Activity of Algae Extract: The Fucales Order Case. Biology and Life Sciences Forum. 2024; 31(1):26. https://doi.org/10.3390/ECM2023-16695
Chicago/Turabian StyleSilva, Aurora, Maria Carpena, Stephanie Lopes Morais, Clara Grosso, Lucia Cassani, Frank Chamorro, Maria Fátima Barroso, Jesus Simal-Gandara, and Miguel A. Prieto. 2024. "A Study on the Antimicrobial Activity of Algae Extract: The Fucales Order Case" Biology and Life Sciences Forum 31, no. 1: 26. https://doi.org/10.3390/ECM2023-16695
APA StyleSilva, A., Carpena, M., Morais, S. L., Grosso, C., Cassani, L., Chamorro, F., Barroso, M. F., Simal-Gandara, J., & Prieto, M. A. (2024). A Study on the Antimicrobial Activity of Algae Extract: The Fucales Order Case. Biology and Life Sciences Forum, 31(1), 26. https://doi.org/10.3390/ECM2023-16695