A Light-Weight CNN Based Multi-Task Architecture for Apple Maturity and Disease Classification †
Abstract
:1. Introduction
2. Image Dataset Setup
3. CNN-Based Lightweight Multi-Task Classification
- Trunk Network: Responsible for extracting common feature information from input images,
- D-Net: Focuses on targeted feature extraction for defect detection,
- M-Net: Utilizes the shared features from the trunk network to classify the maturity grades of fruits.
3.1. Trunk Network
3.2. Defects Classification Sub-Network
3.3. Maturity Classification Sub-Network
4. Experiments
4.1. Evaluation Standard
4.2. Model Training
5. Results
5.1. D-Net Results
5.2. M-Net Results
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tu, S.; Xue, Y.; Zheng, C.; Qi, Y.; Wan, H.; Mao, L. Detection of passion fruits and maturity classification using Red-Green-Blue Depth images. Biosyst. Eng. 2018, 175, 156–167. [Google Scholar] [CrossRef]
- Villaseñor-Aguilar, M.J.; Botello-Álvarez, J.E.; Pérez-Pinal, F.J.; Cano-Lara, M.; León-Galván, M.F.; Bravo-Sánchez, M.G.; Barranco-Gutierrez, A.I. Fuzzy classification of the maturity of the tomato using a vision system. J. Sens. 2019, 2019, 3175848. [Google Scholar] [CrossRef]
- Faisal, M.; Albogamy, F.; Elgibreen, H.; Algabri, M.; Alqershi, F.A. Deep learning and computer vision for estimating date fruits type, maturity level, and weight. IEEE Access 2020, 8, 206770–206782. [Google Scholar] [CrossRef]
- Baeten, J.; Donné, K.; Boedrij, S.; Beckers, W.; Claesen, E. Autonomous fruit picking machine: A robotic apple harvester. In Proceedings of the Field and Service Robotics: Results of the 6th International Conference, Chamonix, France, 9–12 July 2007; Springer: Berlin/Heidelberg, Germany, 2008; pp. 531–539. [Google Scholar]
- Muscato, G.; Prestifilippo, M.; Abbate, N.; Rizzuto, I. A prototype of an orange picking robot: Past history, the new robot and experimental results. Ind. Robot. Int. J. 2005, 32, 128–138. [Google Scholar] [CrossRef]
- Zhang, B.; Zhang, M.; Shen, M.; Li, H.; Zhang, Z.; Zhang, H.; Zhou, Z.; Ren, X.; Ding, Y.; Xing, L.; et al. Quality monitoring method for apples of different maturity under long-term cold storage. Infrared Phys. Technol. 2021, 112, 103580. [Google Scholar] [CrossRef]
- Menesatti, P.; Zanella, A.; D’Andrea, S.; Costa, C.; Paglia, G.; Pallottino, F. Supervised multivariate analysis of hyper-spectral NIR images to evaluate the starch index of apples. Food Bioprocess Technol. 2009, 2, 308–314. [Google Scholar] [CrossRef]
- Pathange, L.P.; Mallikarjunan, P.; Marini, R.P.; O’Keefe, S.; Vaughan, D. Non-destructive evaluation of apple maturity using an electronic nose system. J. Food Eng. 2006, 77, 1018–1023. [Google Scholar] [CrossRef]
- Chagné, D.; Lin-Wang, K.; Espley, R.V.; Volz, R.K.; How, N.M.; Rouse, S.; Brendolise, C.; Carlisle, C.M.; Kumar, S.; De Silva, N.; et al. An ancient duplication of apple MYB transcription factors is responsible for novel red fruit-flesh phenotypes. Plant Physiol. 2013, 161, 225–239. [Google Scholar] [CrossRef] [PubMed]
- Lunadei, L.; Galleguillos, P.; Diezma, B.; Lleó, L.; Ruiz-Garcia, L. A multispectral vision system to evaluate enzymatic browning in fresh-cut apple slices. Postharvest Biol. Technol. 2011, 60, 225–234. [Google Scholar] [CrossRef]
- Schroff, F.; Kalenichenko, D.; Philbin, J. Facenet: A unified embedding for face recognition and clustering. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 815–823. [Google Scholar]
- Usda, U.; Ams, A. United States Standards for Grades of Apples; USDA Publication: Washington, DC, USA, 2002. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 2012, 25, 84–90. [Google Scholar] [CrossRef]
- Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.C. Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 4510–4520. [Google Scholar]
Label Name | Predicted Positive | Predicted Negative |
---|---|---|
True Positive | TP | FN |
True Negative | FP | TN |
Model | Accuracy | Recall | Precision | F1-Score |
---|---|---|---|---|
AlexNet | 0.90 | 0.92 | 0.88 | 0.90 |
ResNet-18 | 0.94 | 0.96 | 0.92 | 0.94 |
ResNet-34 | 0.94 | 0.92 | 0.96 | 0.94 |
VGG-16 | 0.86 | 0.85 | 0.88 | 0.86 |
D-Net | 0.96 | 0.96 | 0.96 | 0.96 |
Model | Accuracy | Recall | Precision | F1-Score |
---|---|---|---|---|
AlexNet | 0.90 | 0.92 | 0.88 | 0.90 |
ResNet-18 | 0.94 | 0.92 | 0.96 | 0.94 |
ResNet-34 | 0.94 | 0.96 | 0.92 | 0.94 |
VGG-16 | 0.86 | 0.88 | 0.84 | 0.86 |
D-Net | 0.96 | 0.96 | 0.96 | 0.96 |
Grade Level | Indicators | AlexNet | ResNet-18 | ResNet-34 | VGG-16 | M-Net |
---|---|---|---|---|---|---|
G1 | Recall | 0.74 | 0.76 | 0.78 | 0.65 | 0.91 |
G1 | Precision | 0.68 | 0.76 | 0.72 | 0.60 | 0.84 |
G1 | F1-score | 0.71 | 0.76 | 0.75 | 0.63 | 0.87 |
G2 | Recall | 0.50 | 0.63 | 0.62 | 0.44 | 0.76 |
G2 | Precision | 0.56 | 0.60 | 0.64 | 0.48 | 0.76 |
G2 | F1-score | 0.53 | 0.61 | 0.63 | 0.46 | 0.76 |
G3 | Recall | 0.68 | 0.76 | 0.72 | 0.67 | 0.81 |
G3 | Precision | 0.68 | 0.76 | 0.72 | 0.64 | 0.88 |
G3 | F1-score | 0.68 | 0.76 | 0.72 | 0.65 | 0.85 |
G4 | Recall | 0.92 | 0.88 | 0.88 | 0.85 | 0.96 |
G4 | Precision | 0.88 | 0.92 | 0.92 | 0.88 | 0.96 |
G4 | F1-score | 0.90 | 0.90 | 0.90 | 0.86 | 0.96 |
- | Accuracy | 0.70 | 0.76 | 0.75 | 0.65 | 0.86 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; Cao, J. A Light-Weight CNN Based Multi-Task Architecture for Apple Maturity and Disease Classification. Biol. Life Sci. Forum 2024, 30, 19. https://doi.org/10.3390/IOCAG2023-16881
Zhang L, Cao J. A Light-Weight CNN Based Multi-Task Architecture for Apple Maturity and Disease Classification. Biology and Life Sciences Forum. 2024; 30(1):19. https://doi.org/10.3390/IOCAG2023-16881
Chicago/Turabian StyleZhang, Li, and Jie Cao. 2024. "A Light-Weight CNN Based Multi-Task Architecture for Apple Maturity and Disease Classification" Biology and Life Sciences Forum 30, no. 1: 19. https://doi.org/10.3390/IOCAG2023-16881
APA StyleZhang, L., & Cao, J. (2024). A Light-Weight CNN Based Multi-Task Architecture for Apple Maturity and Disease Classification. Biology and Life Sciences Forum, 30(1), 19. https://doi.org/10.3390/IOCAG2023-16881