Can Precision Agriculture Be Used in the Management of a Fe and Zn Biofortification Workflow in Organic Tomatoes (Lycopersicum esculentum L.)? †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Biofortification Itinerary
2.2. NDVI (Normalized Difference Vegetation Index) in the Experimental Field
2.3. Iron and Zinc Contents in Leaves and Zinc Content in Tomatoes
2.4. Colorimetric Parameters
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Alexandratos, N.; Bruinsma, J. World Agriculture Towards 2030/2050: The 2012 Revision. Agricultural Development Economics Division. 2012. Available online: http://www.fao.org/fileadmin/templates/esa/Global_persepctives/world_ag_2030_50_2012_rev.pdf (accessed on 20 March 2021).
- Hunter, M.C.; Smith, R.G.; Schipanski, M.E.; Atwood, L.W.; Mortensen, D.A. Agriculture in 2050: Recalibrating targets for sustainable intensification. BioScience 2017, 67, 386–391. [Google Scholar] [CrossRef] [Green Version]
- Walter, A.; Finger, R.; Huber, R.; Buchmann, N. Opinion: Smart farming is key to developing sustainable agriculture. Proc. Natl. Acad. Sci. USA 2017, 114, 6148–6150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Senthilnath, J.; Dokania, A.; Kandukuri, M.; Ramesh, K.N.; Anand, G.; Omkar, S.N. Detection of tomatoes using spectral-spatial methods in remotely sensed RGB images captured by UAV. Biosyst. Eng. 2016, 146, 16–32. [Google Scholar] [CrossRef]
- United States Geological Survey (USGS). Available online: https://www.usgs.gov/core-science-systems/eros/phenology/science/ndvi-foundation-remote-sensing-phenology?qt-science_center_objects=0#qt-science_center_objects (accessed on 24 March 2021).
- Xue, J.; Su, B. Significant remote sensing vegetation indices: A review of developments and applications. J. Sens. 2017, 1, 1353691. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Lian, C.; Zhang, Z.; Shi, X.; Zhang, Y. Agro-biofortification of iron and zinc in edible portion of crops for the global south. Adv. Plant Agric. Res. 2017, 6, 52–54. [Google Scholar] [CrossRef] [Green Version]
- Abbaspour, N.; Hurrell, R.; Kelishadi, R. Review on iron and its importance for human health. J. Res. Med. Sci. 2014, 19, 164. [Google Scholar] [PubMed]
- Roohani, N.; Hurrell, R.; Kelishadi, R.; Schulin, R. Zinc and its importance for human health: An integrative review. J. Res. Med. Sci. 2013, 18, 144–157. [Google Scholar] [PubMed]
- National Institutes of Health (NIH). Available online: https://ods.od.nih.gov/factsheets/Zinc-HealthProfessional/ (accessed on 24 March 2021).
- National Institutes of Health (NIH). Available online: https://ods.od.nih.gov/factsheets/Iron-HealthProfessional/ (accessed on 24 March 2021).
- Wang, Z.; Hassan, M.U.; Nadeen, F.; Wu, L.; Zhang, F.; Li, X. Magnesium fertilization improves crop yield in most production systems: A meta-analysis. Front. Plant Sci. 2020, 10, 17–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alshaal, T.; El-Ramady, H. Foliar application: From plant nutrition to biofortification. Environ. Biodivers. Soil Secur. 2017, 1, 71–83. [Google Scholar] [CrossRef] [Green Version]
- Sainju, U.M.; Dris, R.; Singh, B. Mineral nutrition of tomato. Food Agric. Environ. 2003, 1, 176–183. [Google Scholar]
- Rizzo, G.; Borrello, M.; Dara Guccione, G.; Schifani, G.; Cembalo, L. Organic food consumption: The relevance of the health attribute. Sustainability 2020, 12, 595. [Google Scholar] [CrossRef] [Green Version]
- HelpGuide. Available online: https://www.helpguide.org/articles/healthy-eating/organic-foods.htm (accessed on 24 March 2021).
- Luís, I.C.; Lidon, F.C.; Pessoa, C.C.; Marques, A.C.; Coelho, A.R.F.; Simões, M.; Patanita, M.; Dôres, J.; Ramalho, J.C.; Silva, M.M.; et al. Zinc enrichment in two contrasting genotypes of Triticum aestivum L grains: Interactions between edaphic conditions and foliar fertilizers. Plants 2021, 10, 204. [Google Scholar] [CrossRef] [PubMed]
- Coelho, A.; Pessoa, C.; Marques, A.; Luís, I.; Daccak, D.; Manuela, M.; Reboredo, F.; Pessoa, M.; Galhano, C.; Legoinha, P.; et al. Nutrient interactions in natural fortification of tomato with Mg: An analytical perspective. Biol. Life Sci. Forum. 2020, 4, 8724. [Google Scholar] [CrossRef]
- Jarquín-Enríquez, L.; Mercado-Silva, E.M.; Maldonado, J.L.; Lopez-Baltazar, J. Lycopene content and color index of tomatoes are affected by the greenhouse cover. Sci. Hortic. Amst. 2013, 155, 43–48. [Google Scholar] [CrossRef]
- Dorais, M.; Ehret, D.L.; Papadopoulos, A.P. Tomato (Solanum lycopersicum) health components: From the seed to the consumer. Phytoch. Rev. 2008, 7, 231–250. [Google Scholar] [CrossRef]
- Costa, F.; de Lurdes Baeta, M.; Saraiva, D.; Veríssimo, M.T.; Ramos, F. Evolution of mineral contents in tomato fruits during the ripening process after harvest. Food Anal. Method 2011, 4, 410–415. [Google Scholar] [CrossRef]
Minimum NDVI | Maximum NDVI | Average NDVI | SD |
---|---|---|---|
0.19 | 0.86 | 0.44 | 0.15 |
Leaves | Fruits | |||
---|---|---|---|---|
Variety | Treatments | Fe (ppm) | Zn (ppm) | Zn (ppm) |
Beef heart | Control | <50 | 74.92b ± 1.79 | 38.59c ± 0.43 |
T1 | <50 | 62.29c ± 3.97 | 77.16a ± 0.18 | |
T2 | <50 | 200.8a ± 1.96 | 63.12b ± 1.57 | |
“Chucha” | Control | <50 | 61.67c ± 0.99 | 30.30a ± 1.98 |
T1 | 140.2b ± 7.94 | 140.0b ± 3.14 | 28.76a ± 1.32 | |
T2 | 255.0a ± 10.5 | 167.0a± 2.26 | 13.71b ± 0.86 | |
Apple | Control | 73.90c ± 10.4 | 54.23c ± 0.70 | 30.35b ± 2.71 |
T1 | 113.7b ± 3.84 | 121.7b ± 1.64 | 33.27b ± 1.43 | |
T2 | 273.9a ± 8.55 | 285.3a ± 2.57 | 64.32a ± 1.64 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coelho, A.R.F.; Marques, A.C.; Pessoa, C.C.; Daccak, D.; Luís, I.C.; Caleiro, J.; Brito, M.; Kullberg, J.; Silva, M.M.; Simões, M.; et al. Can Precision Agriculture Be Used in the Management of a Fe and Zn Biofortification Workflow in Organic Tomatoes (Lycopersicum esculentum L.)? Biol. Life Sci. Forum 2021, 3, 41. https://doi.org/10.3390/IECAG2021-09662
Coelho ARF, Marques AC, Pessoa CC, Daccak D, Luís IC, Caleiro J, Brito M, Kullberg J, Silva MM, Simões M, et al. Can Precision Agriculture Be Used in the Management of a Fe and Zn Biofortification Workflow in Organic Tomatoes (Lycopersicum esculentum L.)? Biology and Life Sciences Forum. 2021; 3(1):41. https://doi.org/10.3390/IECAG2021-09662
Chicago/Turabian StyleCoelho, Ana Rita F., Ana Coelho Marques, Cláudia Campos Pessoa, Diana Daccak, Inês Carmo Luís, João Caleiro, Maria Brito, José Kullberg, Maria Manuela Silva, Manuela Simões, and et al. 2021. "Can Precision Agriculture Be Used in the Management of a Fe and Zn Biofortification Workflow in Organic Tomatoes (Lycopersicum esculentum L.)?" Biology and Life Sciences Forum 3, no. 1: 41. https://doi.org/10.3390/IECAG2021-09662
APA StyleCoelho, A. R. F., Marques, A. C., Pessoa, C. C., Daccak, D., Luís, I. C., Caleiro, J., Brito, M., Kullberg, J., Silva, M. M., Simões, M., Reboredo, F. H., Pessoa, M. F., Legoinha, P., Silva, M. J., Rodrigues, A. P., Ramalho, J. C., Scotti-Campos, P., Semedo, J. N., Pais, I. P., & Lidon, F. C. (2021). Can Precision Agriculture Be Used in the Management of a Fe and Zn Biofortification Workflow in Organic Tomatoes (Lycopersicum esculentum L.)? Biology and Life Sciences Forum, 3(1), 41. https://doi.org/10.3390/IECAG2021-09662