Remote Sensing (NDVI) and Apparent Soil Electrical Conductivity (ECap) to Delineate Different Zones in a Vineyard †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Experimental Design
2.3. NDVI and ECap
2.4. Soil Analysis
2.5. Statistical Analysis
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Du, Q.; Chang, N.B.; Yang, C.; Srilakshmi, K.R. Combination of multispectral remote sensing, variable rate technology and environmental modeling for citrus pest management. J. Environ. Manag. 2008, 86, 14–26. [Google Scholar] [CrossRef] [PubMed]
- Balafoutis, A.; Beck, B.; Fountas, S.; Vangeyte, J.; Van Der Wal, T.; Soto, I.; Gómez-Barbero, M.; Barnes, A.P.; Eory, V. Precision agriculture technologies positively contributing to ghg emissions mitigation, farm productivity and economics. Sustainability 2017, 9, 1339. [Google Scholar] [CrossRef] [Green Version]
- Van Alphen, B.J.; Stoorvogel, J.J. A methodology for precision nitrogen fertilization in high-input farming systems. Precis. Agric. 2000, 2, 319–332. [Google Scholar] [CrossRef]
- Nawar, S.; Corstanje, R.; Halcro, G.; Mulla, D.; Mouazen, A.M. Delineation of Soil Management Zones for Variable-Rate Fertilization: A Review. Advances in Agronomy, 1st ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2017; Volume 143. [Google Scholar] [CrossRef]
- Haneklaus, S.; Schnug, E. Impacts of precision agriculture technologies on fertilization. In Proceedings of the 11th international symposium of CIEC “Codes of Goof Fertilizer Practice and Balanced Fertilization”, Pulawy, Poland, 27–29 September 1998; pp. 95–107. [Google Scholar]
- Peralta, N.R.; Costa, J.L. Delineation of management zones with soil apparent electrical conductivity to improve nutrient management. Comput. Electron. Agric. 2013, 99, 218–226. [Google Scholar] [CrossRef] [Green Version]
- Leroux, C.; Tisseyre, B. How to measure and report within-field variability: A review of common indicators and their sensitivity. Precis. Agric. 2019, 20, 562–590. [Google Scholar] [CrossRef]
- Corwin, D.L.; Lesch, S.M. Apparent soil electrical conductivity measurements in agriculture. Comput. Electron. Agric. 2005, 46, 11–43. [Google Scholar] [CrossRef]
- Verhulst, N.; Govaerts, B.; Sayre, K.D. Using NDVI and soil quality analysis to assess influence of agronomic management on within-plot spatial variability and factors limiting production. Plant Soil 2009, 317, 41–59. [Google Scholar] [CrossRef]
- Aldakheel, Y.Y. Assessing NDVI Spatial Pattern as Related to Irrigation and Soil Salinity Management in Al-Hassa Oasis, Saudi Arabia. J. Indian Soc. Remote Sens. 2011, 39, 171–180. [Google Scholar] [CrossRef]
- Bhunia, G.S.; Shit, P.K.; Pourghasemi, H.R. Soil organic carbon mapping using remote sensing techniques and Soil organic carbon mapping using remote sensing techniques and multivariate regression model. Geocarto Int. 2017, 34, 215–226. [Google Scholar] [CrossRef]
- WRB-IUSS. World Reference Base for Soil Resources; World Soil Resources Reports 106. World Soil Resources Reports No. 106; Food & Agriculture Organization: Rome, Italy, 2015. [Google Scholar]
- Instituto Português da Atmosfera e Do Mar. Available online: https://www.ipma.pt/pt/oclima/normais.clima/ (accessed on 27 March 2021).
- Geonics Limited. Available online: http://www.geonics.com/html/em38.html (accessed on 27 March 2021).
- Copernicus Sentinel-2, Overview of Mission at. Available online: https://sentinel.esa.int/web/sentinel/missions/sentinel-2 (accessed on 15 April 2021).
- Statistix Program Version 9.0; Free Trial; Analytical Software: Tallahassee, FL, USA; Available online: https://www.statistix.com/ (accessed on 27 March 2021).
- Lanyon, D. The Effect of Soil Properties on Zn Adsorption. J. Int. Environ. Appl. Sci. 2016, 12, 151–160. Available online: https://www.researchgate.net/publication/228433458 (accessed on 10 July 2021).
- Tagarakis, A.; Liakos, V.; Fountas, S.; Koundouras, S.; Gemtos, T.A. Management zones delineation using fuzzy clustering techniques in grapevines. Precis. Agric. 2013, 14, 18–39. [Google Scholar] [CrossRef]
- Peralta, N.R.; Cicore, P.L.; Marino, M.A.; da Silva, J.R.M.; Costa, J.L. Use of geophysical survey as a predictor of the edaphic properties variability in soils used for livestock production. Span. J. Agric. Res. 2015, 13, 29. [Google Scholar] [CrossRef]
- Peri, P.L.; Rosas, Y.M.; Ladd, B.; Toledo, S.; Lasagno, R.G.; Pastur, G.M. Modeling soil nitrogen content in south Patagonia across a climate gradient, vegetation type, and grazing. Sustainability 2019, 11, 2707. [Google Scholar] [CrossRef] [Green Version]
- Kissel, D.E.; Sonon, L.; Vendrell, P.F.; Isaac, R.A. Salt concentration and measurement of soil pH. Commun. Soil Sci. Plant Anal. 2009, 40, 179–187. [Google Scholar] [CrossRef]
- Corwin, D.L.; Scudiero, E. Field-Scale Apparent Soil Electrical Conductivity. Methods Soil Anal. 2016, 84, 1405–1441. [Google Scholar] [CrossRef]
- Sudduth, K.A.; Kitchen, N.R.; Wiebold, W.J.; Batchelor, W.D.; Bollero, G.A.; Bullock, D.G.; Clay, D.E.; Palm, H.L.; Pierce, F.J.; Schuler, R.T.; et al. Relating apparent electrical conductivity to soil properties across the north-central USA. Comput. Electron. Agric. 2005, 46, 263–283. [Google Scholar] [CrossRef]
- Rodríguez-Pérez, J.R.; Plant, R.E.; Lambert, J.J.; Smart, D.R. Using apparent soil electrical conductivity (ECa) to characterize vineyard soils of high clay content. Precis. Agric. 2011, 12, 775–794. [Google Scholar] [CrossRef] [Green Version]
Zones | pH | pH | EC1:2.5 | SOC | Ntot | Extractable | |
---|---|---|---|---|---|---|---|
P | K | ||||||
(H2O) | (CaCl2) | (µS cm−1) | (%) | (mg kg−1) | |||
Signif. | ** | *** | *** | ns | *** | ns | *** |
Z1 | 6.25 b | 5.36 b | 64.60 b | 0.42 | 255.30 b | 19.85 | 56.90 b |
Z2 | 6.48 a | 5.35 b | 81.11 b | 0.42 | 315.98 a | 18.55 | 91.50 a |
Z3 | 6.51 a | 5.70 a | 161.27 a | 0.42 | 179.85 c | 8.83 | 90.33 a |
Zones | Exchangeable Cations | EA | CEC | SB | BSP | |||
---|---|---|---|---|---|---|---|---|
K+ | Ca2+ | Mg2+ | Na+ | |||||
(cmol+ kg−1) | % | |||||||
Signif. | *** | *** | *** | *** | *** | *** | *** | *** |
Z1 | 0.15 b | 1.66 b | 0.45 c | 0.04 b | 0.11 c | 2.40 c | 2.30 c | 94.46 a |
Z2 | 0.23 a | 2.01 b | 1.07 b | 0.09 b | 0.33 a | 3.74 b | 3.41 b | 90.04 b |
Z3 | 0.23 a | 3.03 a | 2.96 a | 0.43 a | 0.22 b | 6.87 a | 6.65 a | 96.35 a |
Zones | Sand | Silt | Clay |
---|---|---|---|
% | |||
Signif | *** | *** | ** |
Z1 | 85.06 a | 5.71 b | 9.23 b |
Z2 | 73.43 b | 8.58 a | 18.00 a |
Z3 | 71.16 b | 6.67 b | 22.17 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Esteves, C.; Ribeiro, H.; Braga, R.P.; Fangueiro, D. Remote Sensing (NDVI) and Apparent Soil Electrical Conductivity (ECap) to Delineate Different Zones in a Vineyard. Biol. Life Sci. Forum 2021, 3, 42. https://doi.org/10.3390/IECAG2021-10021
Esteves C, Ribeiro H, Braga RP, Fangueiro D. Remote Sensing (NDVI) and Apparent Soil Electrical Conductivity (ECap) to Delineate Different Zones in a Vineyard. Biology and Life Sciences Forum. 2021; 3(1):42. https://doi.org/10.3390/IECAG2021-10021
Chicago/Turabian StyleEsteves, Catarina, Henrique Ribeiro, Ricardo P. Braga, and David Fangueiro. 2021. "Remote Sensing (NDVI) and Apparent Soil Electrical Conductivity (ECap) to Delineate Different Zones in a Vineyard" Biology and Life Sciences Forum 3, no. 1: 42. https://doi.org/10.3390/IECAG2021-10021
APA StyleEsteves, C., Ribeiro, H., Braga, R. P., & Fangueiro, D. (2021). Remote Sensing (NDVI) and Apparent Soil Electrical Conductivity (ECap) to Delineate Different Zones in a Vineyard. Biology and Life Sciences Forum, 3(1), 42. https://doi.org/10.3390/IECAG2021-10021