LCA of Soybean Supply Chain Produced in the State of Pará, Located in the Brazilian Amazon Biome †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Crops
2.2. Life Cycle Assessment Methodology
2.2.1. Aim of the Study
2.2.2. Scope of the Study and Crop Management
2.2.3. Software, Database and LCIA Method Used
2.2.4. Land Use Change (LUC)
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Castanheira, E.G.; Freire, F. Greenhouse gas assessment of soybean production: Implications of land use change and different cultivation systems. J. Clean. Prod. 2013, 54, 49–60. [Google Scholar] [CrossRef]
- USDA—United States Department of Agriculture; Foreign Agricultural Service. World Agricultural Production, Circular Series, WAP 4-21. 2021. Available online: http://apps.fas.usda.gov/psdonline/circulars/production.pdf (accessed on 15 April 2021).
- CONAB—Companhia Nacional de Abastecimento. Acomp. Safra Bras. Grãos, v. 7—Safra 2019/20—Nono Levantamento, Brasília, pp. 1–66, Junho 2020. ISSN 2318-6852. Available online: http://www.conab.gov.br (accessed on 29 March 2021).
- CONAB—Companhia Nacional de Abastecimento. Séries Históricas das Safras—Soja. Available online: https://www.conab.gov.br/info-agro/safras/serie-historica-das-safras?start=30 (accessed on 29 March 2021).
- Gibbs, H.K.; Rausch, L.; Munger, J.; Schelly, I.; Morton, D.C.; Noojipady, P.; Soares-Filho, B.; Barreto, P.; Micol, L.; Walker, N.F. Brazil’s Soy Moratorium. Science 2015, 347, 377–378. [Google Scholar] [CrossRef]
- Maciel, V.G.; Zortea, R.B.; Grillo, I.B.; Lie Ugaya, C.M.; Einloft, S.; Seferin, M. Greenhouse gases assessment of soybean cultivation steps in southern Brazil. J. Clean. Prod. 2016, 131, 747–753. [Google Scholar] [CrossRef]
- Matsuura, M.I.S.F.; Dias, F.R.T.; Picoli, J.F.; Lucas, K.R.G.; de Castro, C.; Hirakuri, M.H. Life-cycle assessment of the soybean-sunflower production system in the Brazilian Cerrado. Int. J. Life Cycle Assess. 2017, 22, 492–501. [Google Scholar] [CrossRef]
- ISO. Environmental Management—Life Cycle Assessment—Principles and Framework (ISO 14040); ISO: Geneva, Switzerland, 2006. [Google Scholar]
- Raucci, G.S.; Moreira, C.S.; Alves, P.A.; Mello, F.F.C.; Frazão, L.D.A.; Cerri, C.E.P.; Cerri, C.C. Greenhouse gas assessment of Brazilian soybean production: A case study of Mato Grosso State. J. Clean. Prod. 2015, 96, 418–425. [Google Scholar] [CrossRef]
- Cavalett, O.; Ortega, E. Integrated environmental assessment of biodiesel production from soybean in Brazil. J. Clean. Prod. 2010, 18, 55–70. [Google Scholar] [CrossRef]
- INMET—Instituto Nacional de Meteorologia. Meteorological Database of INMET. Available online: https://bdmep.inmet.gov.br/ (accessed on 29 March 2021).
- ISO. Environmental Management—Life Cycle Assessment—Requirements and Guidelines (ISO 14044); ISO: Geneva, Switzerland, 2006. [Google Scholar]
- Novaes, R.M.L.; Pazianotto, R.A.A.; Brandão, M.; Alves, B.J.R.; May, A.; Folegatti-Matsuura, M.I.S. Estimating 20-year land use change and derived CO2 emissions associated with crops, pasture and forestry in Brazil and each of its 27 states. Glob. Chang. Biol. 2017, 23, 3716–3728. [Google Scholar] [CrossRef]
- Faist Emmenegger, M.; Reinhard, J.; Zah, R. Sustainability Quick Check for Biofuels—Intermediate Background Report; Agroscope Reckenholz-Tänikon: Dübendorf, Switzerland, 2009. [Google Scholar]
- Nemecek, T.; Schnetzer, J. Methods of Assessment of Direct Field Emissions for LCIs of Agricultural Production Systems, Data v3.0; Agroscope Recknholz-Tänikon Research Station ART: Zurich, Switzerland, 2012. [Google Scholar]
- Silva, V.P.; van der Werf, H.M.G.; Spies, A.; Soares, S.R. Variability in environmental impacts of Brazilian soybean according to crop production and transport scenarios. J. Environ. Manag. 2010, 91, 1831–1839. [Google Scholar] [CrossRef]
- Cederberg, C.; Henriksson, M.; Berglund, M. An LCA researcher’s wish list—data and emission models need to improve LCA studies of animal production. Animal 2013, 7, 212–219. [Google Scholar] [CrossRef] [PubMed]
- ABIOVE—Associação Brasileira das Indústrias de Óleos Vegetais, 2020. Soy Moratorium—12th Year Report, Cropping 2018/19. Available online: https://www.abiove.org.br/relatorios/moratoria-da-soja-relatorio-12o-ano/ (accessed on 15 April 2021).
Pole Origin | Road Distance (km) | Multimodal Platform | Railway Distance (km) | Total Distance Traveled (km) | Port of Shipment |
---|---|---|---|---|---|
Paragominas (PGM) | 351 | 351 | BAR-PA 3 | ||
Paragominas (PGM) | 406 | Porto Franco-MA 1 | 783 | 1189 | SLZ-MA 4 |
Redenção (RDX) | 827 | 827 | BAR-PA 3 | ||
Redenção (RDX) | 305 | Palmeirante-TO 2 | 1001 | 1306 | SLZ-MA 4 |
Input | Amount | Output | Amount |
---|---|---|---|
Application of plant protection product, by field sprayer | 0.00258 ha | Ammonia (NH3) | 0.00028 kg |
Combine harvesting | 0.00030 ha | Dinitrogen monoxide (N2O) | 0.00063 kg |
Fertilizing, by broadcaster | 0.00030 ha | Nitrate | 0.02804 kg |
Sowing | 0.00030 ha | Nitrogen oxides | 0.00013 kg |
Tillage, harrowing, by spring tine harrow | 0.00028 ha | Carbon dioxide, fossil | 0.02502 kg |
Tillage, ploughing | 0.00010 ha | 2,4-D | 0.00045 kg |
Transport, tractor and trailer, agricultural | 0.01570 t km | Acetamiprid | 2.65000 × 10−5 kg |
Soybean seed, for sowing | 0.01280 kg | Fenpropathrin | 1.70000 × 10−5 kg |
Lime | 0.04929 kg | Fluazinam | 0.00011 kg |
Urea, as N | 0.00212 kg | Glyphosate | 0.00061 kg |
Phosphate fertilizer, as P2O5 | 0.03576 kg | Mancozeb | 0.00034 kg |
Phosphate Rock, as P2O5, beneficiated, dry | 0.00212 kg | Prothioconazol | 2.65000 × 10−5 kg |
Potassium chloride, as K2O | 0.03030 kg | Pyraclostrobin (prop) | 2.52300 × 10−5 kg |
Occupation, annual crop, non-irrigated, intensive | 3.25298 m2 year | Pyriproxyfen | 7.60000 × 10−6 kg |
Transformation, from annual crop, non-irrigated | 3.03030 m2 | Phosphorus | 0.00128 kg |
Transformation, to annual crop, non-irrigated, intensive | 3.03030 m2 | Thiophanate-methyl | 0.00011 kg |
Energy, gross calorific value, in biomass | 20.5000 MJ | Trifloxystrobin | 2.27000 × 10−5 kg |
Carbon dioxide, in air | 1.37808 kg | Soybean production | 1 kg |
2,4-dichlorophenol | 0.00045 kg | ||
Pesticide, unspecified | 7.44300 × 10−5 kg | ||
Pyrethroid-compound | 1.70000 × 10−5 kg | ||
Pyridine-compound | 0.00012 kg | ||
Glyphosate | 0.00061 kg | ||
Mancozeb | 0.00034 kg | ||
Triazine-compound | 2.65000 × 10−5 kg | ||
[Sulfonyl] urea-compound | 0.00011 kg |
Impact Category | Unit | Total Emissions | Main Hotspot |
---|---|---|---|
Agricultural land occupation (ALOP) | m2 year | 3.25298 × 100 | PS = 3.25298 × 100 (100%) |
Climate change (GWP100) | kg CO2-Eq | 0.48312 × 100 | PS = 0.21154 × 100 (43.8%) |
Freshwater ecotoxicity (FETPinf) | kg 1,4-DCB-Eq | 1.99383 × 10−2 | PS = 1.946 × 10−2 (95.4%) |
Freshwater eutrophication (FEP) | kg P-Eq | 1.89967 × 10−4 | PS = 1.011 × 10−4 (53.2%) |
Human toxicity (HTPinf) | kg 1,4-DCB-Eq | 0.10915 × 100 | MFPF = 4.81 × 10−2 (44.1%) |
Ionising radiation (IRP_HE) | kg U235-Eq | 1.97907 × 10−2 | MFPF = 8.14 × 10−3 (41.1%) |
Marine ecotoxicity (METPinf) | kg 1,4-DCB-Eq | 2.42444 × 10−3 | PS = 1.429 × 10−3 (58.9%) |
Marine eutrophication (MEP) | kg N-Eq | 7.10465 × 10−3 | PS = 6.413 × 10−3 (90.2%) |
Ozone depletion (ODPinf) | kg CFC-11-Eq | 2.82500 × 108 | MFCH = 7.59 × 10−9 (26.9%) |
Particulate matter formation (PMFP) | kg PM10-Eq | 9.67280 × 10−3 | MFPF = 3.24 × 10−4 (29.6%) |
Photochemical oxidant formation (POFP) | kg NMVOC-Eq | 2.03110 × 10−3 | MFCH = 6.67 × 10−3 (32.8%) |
Terrestrial acidification (TAP100) | kg SO2-Eq | 2.57782 × 10−3 | PS = 7.623 × 10−4 (29.6%) |
Terrestrial ecotoxicity (TETPinf) | kg 1,4-DCB-Eq | 0.01326 × 100 | PS = 1.243 × 10−2 (93.7%) |
Soybean Crop Expansion (%) | Scenarios | Emissions (tCO2 Eq·ha−1·yr−1) | T0 Soy (ha), Pre Existent 1999 | T1 Soy (ha), 1st Season 2018 | Arable | Permanent Crops | Unspecified, Natural |
---|---|---|---|---|---|---|---|
Min. | 3.8 | 1238 | 545,227 | 455,187 (84%) | 38,523 (7%) | 50,279 (9%) | |
100 | Pro. | 30.35 | 1238 | 545,227 | 36,811 (7%) | 3115 (1%) | 504,063 (92%) |
Max. | 32.69 | 1238 | 545,227 | − | − | 543,989 (100%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brito, T.; Fragoso, R.; Marques, P.; Fernandes-Silva, A.; Aranha, J. LCA of Soybean Supply Chain Produced in the State of Pará, Located in the Brazilian Amazon Biome. Biol. Life Sci. Forum 2021, 3, 11. https://doi.org/10.3390/IECAG2021-10072
Brito T, Fragoso R, Marques P, Fernandes-Silva A, Aranha J. LCA of Soybean Supply Chain Produced in the State of Pará, Located in the Brazilian Amazon Biome. Biology and Life Sciences Forum. 2021; 3(1):11. https://doi.org/10.3390/IECAG2021-10072
Chicago/Turabian StyleBrito, Thyago, Rui Fragoso, Pedro Marques, Anabela Fernandes-Silva, and José Aranha. 2021. "LCA of Soybean Supply Chain Produced in the State of Pará, Located in the Brazilian Amazon Biome" Biology and Life Sciences Forum 3, no. 1: 11. https://doi.org/10.3390/IECAG2021-10072
APA StyleBrito, T., Fragoso, R., Marques, P., Fernandes-Silva, A., & Aranha, J. (2021). LCA of Soybean Supply Chain Produced in the State of Pará, Located in the Brazilian Amazon Biome. Biology and Life Sciences Forum, 3(1), 11. https://doi.org/10.3390/IECAG2021-10072