Foliar Application with Plant-Derived Extracts Enhances Growth, Physiological Parameters, and Yield of Potatoes (Solanum tuberosum L.) †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Growing Conditions
2.2. Experimental Design
2.3. Extract Preparation
2.4. Determination of Vegetative Growth and Certain Physiological and Yield Parameters
- Plant height, number of leaflets and number of leaves
- Leaf area
- Leaf chlorophyll content index
- Yield and fresh tuber mass
- Statistical analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hussain, T. Potatoes: Ensuring Food for the Future. Adv. Plants Agric. Res. 2016, 3, 178–182. [Google Scholar] [CrossRef]
- Baruah, S.; Mohanty, S. Sustainable Intensification of Potato Cultivation in Asia. In Scaling-Up Solutions for Farmers: Technology, Partnerships and Convergence; Springer: Cham, Switzerland, 2021; pp. 307–322. [Google Scholar]
- Zaheer, K.; Akhtar, M.H. Potato Production, Usage, and Nutrition—A Review. Crit. Rev. Food Sci. Nutr. 2016, 56, 711–721. [Google Scholar] [CrossRef] [PubMed]
- Khansari, N.; Shakiba, Y.; Mahmoudi, M. Chronic Inflammation and Oxidative Stress as a Major Cause of Age-Related Diseases and Cancer. Recent Pat. Inflamm. Allergy Drug Discov. 2009, 3, 73–80. [Google Scholar] [CrossRef] [PubMed]
- Parajuli, R.; Thoma, G.; Matlock, M.D. Environmental Sustainability of Fruit and Vegetable Production Supply Chains in the Face of Climate Change: A Review. Sci. Total Environ. 2019, 650, 2863–2879. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Kumar, V.; Shahzad, B.; Tanveer, M.; Sidhu, G.P.S.; Handa, N.; Kohli, S.K.; Yadav, P.; Bali, A.S.; Parihar, R.D.; et al. Worldwide Pesticide Usage and Its Impacts on Ecosystem. SN Appl. Sci. 2019, 1, 1446. [Google Scholar] [CrossRef]
- Zulfiqar, F.; Casadesús, A.; Brockman, H.; Munné-Bosch, S. An Overview of Plant-Based Natural Biostimulants for Sustainable Horticulture with a Particular Focus on Moringa Leaf Extracts. Plant Sci. 2020, 295, 110194. [Google Scholar] [CrossRef] [PubMed]
- Lucas, J.A.; Hawkins, N.J.; Fraaije, B.A. The Evolution of Fungicide Resistance. Adv. Appl. Microbiol. 2015, 90, 29–92. [Google Scholar] [PubMed]
- Haider, M.W.; Ayyub, C.M.; Pervez, M.A.; Asad, H.U.; Manan, A.; Raza, S.A.; Ashraf, I. Impact of Foliar Application of Seaweed Extract on Growth, Yield and Quality of Potato (Solanum Tuberosum L.). Soil Environ. 2012, 31, 157–162. [Google Scholar]
- Rajendran, R.; Jagmohan, S.; Jayaraj, P.; Ali, O.; Ramsubhag, A.; Jayaraman, J. Effects of Ascophyllum Nodosum Extract on Sweet Pepper Plants as an Organic Biostimulant in Grow Box Home Garden Conditions. J. Appl. Phycol. 2022, 34, 647–657. [Google Scholar] [CrossRef]
- Ahmed, M.; Ullah, H.; Piromsri, K.; Tisarum, R.; Cha-um, S.; Datta, A. Effects of an Ascophyllum Nodosum Seaweed Extract Application Dose and Method on Growth, Fruit Yield, Quality, and Water Productivity of Tomato under Water-Deficit Stress. S. Afr. J. Bot. 2022, 151, 95–107. [Google Scholar] [CrossRef]
- Ngcobo, B.L.; Bertling, I. Influence of Foliar Moringa Oleifera Leaf Extract (MLE) Application on Growth, Fruit Yield and Nutritional Quality of Cherry Tomato. In Acta Horticulturae, Proceedings of the II International Symposium on Moringa, Pretoria South Africa, 10–13 November 2019; ISHS (International Society for Horticultural Science): Leuven, Belgium, 2021; Volume 1306, p. 1306. [Google Scholar]
- Bhatt, M.; Chanda, S. V Prediction of Leaf Area in Phaseolus Vulgaris by Non-Destructive Method. Bulg. J. Plant Physiol. 2003, 29, 96–100. [Google Scholar]
- Hala, H.; Abou, E.; Nabila, A.E. Effect of Moringa Oleifera Leaf Extract (MLE) on Pepper Seed Germination, Seedlings Improvement, Growth, Fruit Yield and Its Quality. Middle East J. Agric. Res. 2017, 6, 448–463. [Google Scholar]
- Rayorath, P.; Jithesh, M.N.; Farid, A.; Khan, W.; Palanisamy, R.; Hankins, S.D.; Critchley, A.T.; Prithiviraj, B. Rapid Bioassays to Evaluate the Plant Growth Promoting Activity of Ascophyllum Nodosum (L.) Le Jol. Using a Model Plant, Arabidopsis Thaliana (L.) Heynh. J. Appl. Phycol. 2008, 20, 423–429. [Google Scholar] [CrossRef]
- Arif, Y.; Bajguz, A.; Hayat, S. Moringa Oleifera Extract as a Natural Plant Biostimulant. J. Plant Growth Regul. 2023, 42, 1291–1306. [Google Scholar] [CrossRef]
- Buet, A.; Costa, M.L.; Martínez, D.E.; Guiamet, J.J. Chloroplast Protein Degradation in Senescing Leaves: Proteases and Lytic Compartments. Front. Plant Sci. 2019, 10, 747. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Jonsdottir, R.; Ólafsdóttir, G. Total Phenolic Compounds, Radical Scavenging and Metal Chelation of Extracts from Icelandic Seaweeds. Food Chem. 2009, 116, 240–248. [Google Scholar] [CrossRef]
- Batool, S.; Khan, S.; Basra, S.M.A. Foliar Application of Moringa Leaf Extract Improves the Growth of Moringa Seedlings in Winter. S. Afr. J. Bot. 2020, 129, 347–353. [Google Scholar] [CrossRef]
- Rioux, L.E.; Turgeon, S.L.; Beaulieu, M. Characterization of Polysaccharides Extracted from Brown Seaweeds. Carbohydr. Polym. 2007, 69, 530–537. [Google Scholar] [CrossRef]
- Kałuzewicz, A.; Krzesiński, W.; Spizewski, T.; Zaworska, A. Effect of Biostimulants on Several Physiological Characteristics and Chlorophyll Content in Broccoli under Drought Stress and Re-Watering. Not. Bot. Horti Agrobot. Cluj-Napoca 2017, 45, 197–202. [Google Scholar] [CrossRef]
- Ali, J.; Jan, I.; Ullah, H.; Ahmed, N.; Alam, M.; Ullah, R.; El-Sharnouby, M.; Kesba, H.; Shukry, M.; Sayed, S.; et al. Influence of Ascophyllum Nodosum Extract Foliar Spray on the Physiological and Biochemical Attributes of Okra under Drought Stress. Plants 2022, 11, 790. [Google Scholar] [CrossRef] [PubMed]
Treatments | Plant Height (cm) | No. of Leaflets | No. of Leaves | Leaf Area (cm2/cm2) | Leaf Chlorophyll Index (CCI) | Total Yield (Tubers/Plant) | Fresh Tuber Mass (g) |
---|---|---|---|---|---|---|---|
Control | 24.26 c | 42.67 d | 12.73 c | 64.91 e | 28.78 b | 6.33 b | 130.5 d |
ANE | 28.56 a | 51.6 b | 15.13 a | 89.89 a | 34.45 a | 10.00 a | 177.90 a |
AVE | 24.37 c | 47.53 c | 13.87 b | 70.54 d | 33.88 a | 7.33 b | 144.6 cd |
GBE | 26.43 b | 48.87 bc | 14.20 b | 76.60 c | 30.3 b | 6.33 b | 155.4 bc |
MLE | 27.60 a | 55.00 a | 15.87 a | 84.01 b | 34.89 a | 8.00 b | 164.1 ab |
LSD | 2.20 | 2.88 | 0.85 | 3.52 | 2.898 | 1.82 | 17.04 |
F pr. | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 0.006 | 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mbuyisa, S.; Bertling, I.; Ngcobo, B.L. Foliar Application with Plant-Derived Extracts Enhances Growth, Physiological Parameters, and Yield of Potatoes (Solanum tuberosum L.). Biol. Life Sci. Forum 2023, 27, 34. https://doi.org/10.3390/IECAG2023-15385
Mbuyisa S, Bertling I, Ngcobo BL. Foliar Application with Plant-Derived Extracts Enhances Growth, Physiological Parameters, and Yield of Potatoes (Solanum tuberosum L.). Biology and Life Sciences Forum. 2023; 27(1):34. https://doi.org/10.3390/IECAG2023-15385
Chicago/Turabian StyleMbuyisa, Siphokuhle, Isa Bertling, and Bonga Lewis Ngcobo. 2023. "Foliar Application with Plant-Derived Extracts Enhances Growth, Physiological Parameters, and Yield of Potatoes (Solanum tuberosum L.)" Biology and Life Sciences Forum 27, no. 1: 34. https://doi.org/10.3390/IECAG2023-15385