Characterization of Bioactive Compounds and Element Content in Goat Milk and Cheese Products †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples Pretreatment and Analysis Using High-Performance Liquid Chromatography (HPLC)
2.1.1. Milk Samples Collection and Cheese Preparation
2.1.2. Chemicals/Reagents and Analysis
2.2. Solid Phase Microextraction (SPME) Coupled with Gas Chromatography-Mass Spectrometry (GC-MS) for Terpenoids Detection
2.3. X-ray Fluorescence for the Determination of Major Element Content in Dairy Products
3. Results and Discussion
3.1. Analyzing Beta-Carotene and Lutein Using High-Performance Liquid Chromatography
3.2. Headspace Solid Phase Microextraction (HS-SPME) Coupled with Gas Chromatography-Mass Spectrometry (GC-MS) for Terpenoids Detection
3.3. Determination of Major Element Content Using X-ray Fluorescence
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yangilar, F. As a potentially functional food: Goats’ milk and products. J. Food Nutr. Res. 2013, 1, 68–81. [Google Scholar]
- Machmudah, S.; Goto, M. Methods for extraction and analysis of carotenoids. In Natural Products: Phytochemistry, Botany and Metabolism of Alkaloids, Phenolics and Terpenes; Springer: Berlin/Heidelberg, Germany, 2013; pp. 3367–3411. [Google Scholar]
- Becze, A.; Naghiu, M.O. Liquid chromatographic method for the determination of beta-carotene from milk and cheese. Agricultura 2020, 3, 115–116. [Google Scholar]
- Abilleira, E.; De Renobales, M. An accurate quantitative method for the analysis of terpenes in milk fat by headspace solid-phase microextraction coupled to gas chromatography–mass spectrometry. Food Chem. 2010, 120, 1162–1169. [Google Scholar] [CrossRef]
- Székelyhidi, R.; Lakatos, E. Development of new HS–SPME–GC–MS technique to the measurement of volatile terpenoid profile of milk. Food Anal. Methods 2021, 14, 2585–2596. [Google Scholar] [CrossRef]
- Pashkova, G.V. X-ray fluorescence determination of element contents in milk and dairy products. Food Anal. Methods 2009, 2, 303–310. [Google Scholar] [CrossRef]
- Andrés, V.; Villanueva, M.J. Simultaneous determination of tocopherols, retinol, ester derivatives and β-carotene in milk- and soy-juice based beverages by HPLC with diode-array detection. Lebensm.-Wiss. Technol. 2014, 58, 557–562. [Google Scholar] [CrossRef]
- Gatzias, I.S.; Karabagias, I.K. Geographical differentiation of feta cheese from northern Greece based on physicochemical parameters, volatile compounds and fatty acids. LWT 2020, 131, 109615. [Google Scholar] [CrossRef]
- Bottiroli, R.; Aprea, E.; Betta, E.; Fogliano, V.; Gasperi, F. Application of headspace solid phase micro-extraction gas chromatography for the assessment of the volatiles profiles of ultra-high temperature hydrolysed-lactose milk during production and storage. Int. Dairy J. 2020, 107, 104715. [Google Scholar] [CrossRef]
- Kalač, P. The effects of silage feeding on some sensory and health attributes of cow’s milk: A review. Food Chem. 2011, 125, 307–317. [Google Scholar] [CrossRef]
- Ayad, E.H.E.; Verheul, A. Flavour forming abilities and amino acid requirements of Lactococcuslactis strains isolated from artisanal and non-dairy origin. Int. Dairy J. 1999, 9, 725–735. [Google Scholar] [CrossRef]
- Visentin, G.; Niero, G. Genetic (co)variances between milk mineral concentration and chemical composition in lactating Holstein-Friesian dairy cows. Animal 2019, 13, 477–486. [Google Scholar] [CrossRef] [PubMed]
- Canabady-Rochelle, L.; Mellema, M. Physical–chemical comparison of cow’s milk proteins versus soy proteins in their calcium-binding capacities. Colloids Surf. A Physicochem. Eng. Asp. 2010, 366, 110–112. [Google Scholar] [CrossRef]
- Rude, R.K. Magnesium deficiency: A cause of heterogenous disease in humans. J. Bone Miner. Res. 1998, 13, 749–758. [Google Scholar] [CrossRef] [PubMed]
Volatile Components | M1 | M2 | M3 | M4 | M5 | M6 | M7 | M8 |
---|---|---|---|---|---|---|---|---|
Total Ketones | ||||||||
2-Heptanone | + | + | + | + | + | − | − | − |
2-Nonanone | + | + | + | + | + | + | − | − |
Total Aldeydes | ||||||||
Nonanal | − | + | + | − | − | − | − | − |
Total Acids | ||||||||
Hexanoic acid | − | + | − | + | + | − | + | + |
Octanoic acid | − | + | + | + | + | + | + | + |
Butanoic acid | − | − | − | − | + | + | − | + |
Total Esters | ||||||||
Octanoic acid, methyl ester | + | + | − | − | − | − | − | − |
Decanoic acid, methyl ester | + | + | − | − | − | − | − | − |
Decanoic acid, ethyl ester | − | − | − | − | − | − | − | − |
Hexanoic acid, ethyl ester | − | − | − | − | − | − | − | − |
Octanoic acid, ethyl ester | − | − | − | − | − | − | − | − |
Total Terpenoids | ||||||||
α-pinene | + | + | + | + | + | + | + | + |
Volatile Components | CH1 | CH2 | CH3 | CH4 | CH5 | CH6 | CH7 | CH8 |
---|---|---|---|---|---|---|---|---|
Total Ketones | ||||||||
2-Heptanone | + | + | + | − | − | − | − | − |
2-Nonanone | + | + | − | − | + | − | − | − |
Total Aldeydes | ||||||||
Nonanal | − | − | − | − | − | − | − | − |
Total Acids | ||||||||
Hexanoic acid | − | + | − | − | − | − | − | − |
Octanoic acid | − | + | + | − | − | − | − | − |
Butanoic acid | − | − | − | − | + | + | − | − |
Total Esters | ||||||||
Octanoic acid, methyl ester | − | − | − | − | − | − | − | − |
Decanoic acid, methyl ester | − | − | − | − | − | − | − | − |
Decanoic acid, ethyl ester | − | + | + | + | + | + | + | + |
Hexanoic acid, ethyl ester | − | + | − | + | + | − | + | − |
Octanoic acid, ethyl ester | − | + | − | − | + | − | + | + |
Total Terpenoids | ||||||||
α-pinene | + | + | + | + | + | + | + | + |
Trait | Mean | Minimum | Maximum |
---|---|---|---|
Milk minerals (ppm) | |||
Calcium (Ca) | 2097.3 | 861.2 | 2617.7 |
Clorine (Cl) | 1925.2 | 1500 | 2615 |
Potassium (K) | 1872.9 | 1481 | 2835.0 |
Phosphorus (P) | 1262.9 | 640.6 | 2256.7 |
Sulfur (S) | 579.7 | 345.4 | 965.1 |
Sodium (Na) | 510.1 | 350.2 | 783.0 |
Magnesium (Mg) | 186.0 | 138.4 | 371.6 |
Cheese minerals (ppm) | |||
Calcium (Ca) | 5164.1 | 3704.8 | 6548.7 |
Potassium (K) | 1311.4 | 772.9 | 1672.0 |
Phosphorus (P) | 3645.7 | 2895.0 | 4298.6 |
Sulfur (S) | 1773.7 | 1586.5 | 2043.8 |
Magnesium (Mg) | 309.1 | 256.9 | 359.0 |
Cheese minerals (%) | |||
Clorine (Cl) | 2.2 | 1.5 | 3.2 |
Sodium (Na) | 1.8 | 1.4 | 2.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kontodimos, I.; Chatzimanoli, E.; Kasapidou, E.; Basdagianni, Z.; Karatzia, M.-A.; Amanatidis, M.; Margaritis, N. Characterization of Bioactive Compounds and Element Content in Goat Milk and Cheese Products. Biol. Life Sci. Forum 2023, 26, 98. https://doi.org/10.3390/Foods2023-15131
Kontodimos I, Chatzimanoli E, Kasapidou E, Basdagianni Z, Karatzia M-A, Amanatidis M, Margaritis N. Characterization of Bioactive Compounds and Element Content in Goat Milk and Cheese Products. Biology and Life Sciences Forum. 2023; 26(1):98. https://doi.org/10.3390/Foods2023-15131
Chicago/Turabian StyleKontodimos, Ioannis, Eftichia Chatzimanoli, Eleni Kasapidou, Zoitsa Basdagianni, Maria-Anastasia Karatzia, Michail Amanatidis, and Nikolaos Margaritis. 2023. "Characterization of Bioactive Compounds and Element Content in Goat Milk and Cheese Products" Biology and Life Sciences Forum 26, no. 1: 98. https://doi.org/10.3390/Foods2023-15131
APA StyleKontodimos, I., Chatzimanoli, E., Kasapidou, E., Basdagianni, Z., Karatzia, M. -A., Amanatidis, M., & Margaritis, N. (2023). Characterization of Bioactive Compounds and Element Content in Goat Milk and Cheese Products. Biology and Life Sciences Forum, 26(1), 98. https://doi.org/10.3390/Foods2023-15131