Exploring the Antiradical Potential of Species from Lamiaceae Family: Implications for Functional Food Development in the Context of Neurodegenerative and Neuropsychiatric Diseases †
Abstract
:1. Introduction
2. Material and Methods
2.1. Plant Species
2.2. Extraction Procedure
2.3. Determination of Total Phenolic Compounds (TPC)
2.4. Antiradical Acitvity
2.5. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sharifi-Rad, M.; Anil Kumar, N.V.; Zucca, P.; Varoni, E.M.; Dini, L.; Panzarini, E.; Rajkovic, J.; Tsouh Fokou, P.V.; Azzini, E.; Peluso, I.; et al. Lifestyle, Oxidative Stress, and Antioxidants: Back and Forth in the Pathophysiology of Chronic Diseases. Front. Physiol. 2020, 11, 694. [Google Scholar] [CrossRef]
- Petrucci, G.; Rizzi, A.; Hatem, D.; Tosti, G.; Rocca, B.; Pitocco, D. Role of Oxidative Stress in the Pathogenesis of Atherothrombotic Diseases. Antioxidants 2022, 11, 1408. [Google Scholar] [CrossRef]
- Bhatti, J.S.; Sehrawat, A.; Mishra, J.; Sidhu, I.S.; Navik, U.; Khullar, N.; Kumar, S.; Bhatti, G.K.; Reddy, P.H. Oxidative stress in the pathophysiology of type 2 diabetes and related complications: Current therapeutics strategies and future perspectives. Free Radic. Biol. Med. 2022, 184, 114–134. [Google Scholar] [CrossRef]
- Jiang, T.; Sun, Q.; Chen, S. Oxidative stress: A major pathogenesis and potential therapeutic target of antioxidative agents in Parkinson’s disease and Alzheimer’s disease. Prog. Neurobiol. 2016, 147, 1–19. [Google Scholar] [CrossRef]
- Bhatt, S.; Nagappa, A.N.; Patil, C.R. Role of oxidative stress in depression. Drug Discov. Today 2020, 25, 1270–1276. [Google Scholar] [CrossRef]
- Hayes, J.D.; Dinkova-Kostova, A.T.; Tew, K.D. Oxidative Stress in Cancer. Cancer Cell 2020, 38, 167–197. [Google Scholar] [CrossRef]
- Meulmeester, F.L.; Luo, J.; Martens, L.G.; Mills, K.; van Heemst, D.; Noordam, R. Antioxidant Supplementation in Oxidative Stress-Related Diseases: What Have We Learned from Studies on Alpha-Tocopherol? Antioxidants 2022, 11, 2322. [Google Scholar] [CrossRef]
- Xu, D.-P.; Li, Y.; Meng, X.; Zhou, T.; Zhou, Y.; Zheng, J.; Zhang, J.-J.; Li, H.-B. Natural Antioxidants in Foods and Medicinal Plants: Extraction, Assessment and Resources. Int. J. Mol. Sci. 2017, 18, 96. [Google Scholar] [CrossRef]
- Lourenço, S.C.; Moldão-Martins, M.; Alves, V.D. Antioxidants of Natural Plant Origins: From Sources to Food Industry Applications. Molecules 2019, 24, 4132. [Google Scholar] [CrossRef]
- Marchioni, I.; Najar, B.; Ruffoni, B.; Copetta, A.; Pistelli, L.; Pistelli, L. Bioactive Compounds and Aroma Profile of Some Lamiaceae Edible Flowers. Plants 2020, 9, 691. [Google Scholar] [CrossRef]
- Gürbüz, P.; Martinez, A.; Pérez, C.; Martínez-González, L.; Göger, F.; Ayran, İ. Potential anti-Alzheimer effects of selected Lamiaceae plants through polypharmacology on glycogen synthase kinase-3β, β-secretase, and casein kinase 1δ. Ind. Crops Prod. 2019, 138, 111431. [Google Scholar] [CrossRef]
- Gomes, I.; Rodrigues, H.; Rodrigues, C.; Marques, M.; Paíga, P.; Paiva, A.; Simões, P.; Fernandes, V.C.; Vieira, M.; Delerue-Matos, C.; et al. Evaluation of the Biological Potential of Himanthalia elongata (L.) S.F.Gray and Eisenia bicyclis (Kjellman) Setchell Subcritical Water Extracts. Foods 2022, 11, 746. [Google Scholar] [CrossRef]
- Brezoiu, A.-M.; Prundeanu, M.; Berger, D.; Deaconu, M.; Matei, C.; Oprea, O.; Vasile, E.; Negreanu-Pîrjol, T.; Muntean, D.; Danciu, C. Properties of Salvia officinalis L. and Thymus serpyllum L. Extracts Free and Embedded into Mesopores of Silica and Titania Nanomaterials. Nanomaterials 2020, 10, 820. [Google Scholar] [CrossRef]
- Schnitzler, P.; Nolkemper, S.; Stintzing, F.C.; Reichling, J. Comparative in vitro study on the anti-herpetic effect of phytochemically characterized aqueous and ethanolic extracts of Salvia officinalis grown at two different locations. Phytomedicine 2008, 15, 62–70. [Google Scholar] [CrossRef]
- Benabdallah, A.; Rahmoune, C.; Boumendjel, M.; Aissi, O.; Messaoud, C. Total phenolic content and antioxidant activity of six wild Mentha species (Lamiaceae) from northeast of Algeria. Asian Pac. J. Trop. Biomed. 2016, 6, 760–766. [Google Scholar] [CrossRef]
- Dorman, H.J.D.; Koşar, M.; Kahlos, K.; Holm, Y.; Hiltunen, R. Antioxidant Properties and Composition of Aqueous Extracts from Mentha Species, Hybrids, Varieties, and Cultivars. J. Agric. Food Chem. 2003, 51, 4563–4569. [Google Scholar] [CrossRef]
- Yan, F.; Azizi, A.; Janke, S.; Schwarz, M.; Zeller, S.; Honermeier, B. Antioxidant capacity variation in the oregano (Origanum vulgare L.) collection of the German National Genebank. Ind. Crops Prod. 2016, 92, 19–25. [Google Scholar] [CrossRef]
- Méabed, E.M.H.; El- Sayed, N.M.; Abou-Sreea, A.I.B.; Roby, M.H.H. Chemical analysis of aqueous extracts of Origanum majorana and Foeniculum vulgare and their efficacy on Blastocystis spp. cysts. Phytomedicine 2018, 43, 158–163. [Google Scholar] [CrossRef]
- Jafari, S.Z.; Jafarian, S.; Hojjati, M.; Najafian, L. Evaluation of antioxidant activity of nano- and microencapsulated rosemary (Rosmarinus officinalis L.) leaves extract in cress (Lepidium sativum) and basil (Ocimum basilicum) seed gums for enhancing oxidative stability of sunflower oil. Food Sci. Nutr. 2022, 10, 2111–2119. [Google Scholar] [CrossRef]
- Soheili, M.; Salami, M. Lavandula angustifolia biological characteristics: An in vitro study. J. Cell. Physiol. 2019, 234, 16424–16430. [Google Scholar] [CrossRef]
- Kaurinovic, B.; Popovic, M.; Vlaisavljevic, S.; Trivic, S. Antioxidant Capacity of Ocimum basilicum L. and Origanum vulgare L. Extracts. Molecules 2011, 16, 7401–7414. [Google Scholar] [CrossRef] [PubMed]
- Salem, M.A.; Radwan, R.A.; Mostafa, E.S.; Alseekh, S.; Fernie, A.R.; Ezzat, S.M. Using an UPLC/MS-based untargeted metabolomics approach for assessing the antioxidant capacity and anti-aging potential of selected herbs. RSC Adv. 2020, 10, 31511–31524. [Google Scholar] [CrossRef] [PubMed]
- Vieira, S.F.; Ferreira, H.; Neves, N.M. Antioxidant and Anti-Inflammatory Activities of Cytocompatible Salvia officinalis Extracts: A Comparison between Traditional and Soxhlet Extraction. Antioxidants 2020, 9, 1157. [Google Scholar] [CrossRef] [PubMed]
- Gedikoğlu, A.; Sökmen, M.; Çivit, A. Evaluation of Thymus vulgaris and Thymbra spicata essential oils and plant extracts for chemical composition, antioxidant, and antimicrobial properties. Food Sci. Nutr. 2019, 7, 1704–1714. [Google Scholar] [CrossRef] [PubMed]
- Mapeka, T.M.; Sandasi, M.; Viljoen, A.M.; van Vuuren, S.F. Optimization of Antioxidant Synergy in a Polyherbal Combination by Experimental Design. Molecules 2022, 27, 4196. [Google Scholar] [CrossRef] [PubMed]
Species | TPC (mg GAE/g dw) | DPPH• Scavenging Activity (IC50, μg/mL) | ABTS•+ Scavenging Activity (IC50, μg/mL) |
---|---|---|---|
Lavandula angustifolia Miller | 94.97 ± 11.82 e | 42.66 ± 0.98 c,d | 36.36 ± 1.71 b |
Mentha piperita L. | 188.9 ± 6.5 b | 34.52 ± 3.76 c,d | 28.17 ± 2.52 c |
Mentha pulegium L. | 140.4 ± 4.1 c,d | 43.31 ± 1.90 c | 25.15 ± 2.74 c |
Ocimum basilicum L. | 68.32 ± 8.92 e,f | 40.41 ± 1.57 c,d | 44.65 ± 2.34 a |
Ocimum basilicum var minimum L. | 59.97 ± 6.18 f | 132.0 ± 15.3 a | 37.45 ± 1.12 b |
Origanum majorana L. | 118.6 ± 14.4 d,e | 54.71 ± 17.13 b | 24.83 ± 0.80 c |
Origanum vulgare L. | 156.6 ± 9.2 c | 21.55 ± 1.18 d | 14.79 ± 0.50 d |
Rosmarinus officinalis L. | 195.1 ± 18.3 b | 25.78 ± 1.13 c,d | 19.06 ± 0.57 d |
Salvia officinalis L. | 374.0 ± 16.9 a | 29.64 ± 1.71 c,d | 28.04 ± 0.39 c |
Thymus vulgaris L. | 70.96 ± 4.24 e,f | 43.77 ± 0.36 c | 28.50 ± 0.91 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Campinho, A.; Alves, J.; Martins, R.; Vieira, M.; Grosso, C.; Delerue-Matos, C. Exploring the Antiradical Potential of Species from Lamiaceae Family: Implications for Functional Food Development in the Context of Neurodegenerative and Neuropsychiatric Diseases. Biol. Life Sci. Forum 2023, 26, 33. https://doi.org/10.3390/Foods2023-15493
Campinho A, Alves J, Martins R, Vieira M, Grosso C, Delerue-Matos C. Exploring the Antiradical Potential of Species from Lamiaceae Family: Implications for Functional Food Development in the Context of Neurodegenerative and Neuropsychiatric Diseases. Biology and Life Sciences Forum. 2023; 26(1):33. https://doi.org/10.3390/Foods2023-15493
Chicago/Turabian StyleCampinho, Ana, Joana Alves, Rosário Martins, Mónica Vieira, Clara Grosso, and Cristina Delerue-Matos. 2023. "Exploring the Antiradical Potential of Species from Lamiaceae Family: Implications for Functional Food Development in the Context of Neurodegenerative and Neuropsychiatric Diseases" Biology and Life Sciences Forum 26, no. 1: 33. https://doi.org/10.3390/Foods2023-15493
APA StyleCampinho, A., Alves, J., Martins, R., Vieira, M., Grosso, C., & Delerue-Matos, C. (2023). Exploring the Antiradical Potential of Species from Lamiaceae Family: Implications for Functional Food Development in the Context of Neurodegenerative and Neuropsychiatric Diseases. Biology and Life Sciences Forum, 26(1), 33. https://doi.org/10.3390/Foods2023-15493