Antimicrobial Properties of Chestnut Shell Extract as an Ecofriendly Approach for Food Preservation †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples of Chestnut Shells
2.2. Extraction
2.3. Antimicrobial Activity
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- López-Sáez, J.A.; Glais, A.; Robles-López, S.; Alba-Sánchez, F.; Pérez-Díaz, S.; Abel-Schaad, D.; Luelmo-Lautenschlaeger, R. Unraveling the naturalness of sweet chestnut forests (Castanea sativa Mill.) in central Spain. Veg. Hist. Archaeobotany 2017, 26, 167–182. [Google Scholar] [CrossRef]
- Silva, V.; Falco, V.; Dias, M.I.; Barros, L.; Silva, A.; Capita, R.; Alonso-Calleja, C.; Amaral, J.S.; Igrejas, G.; CFR Ferreira, I. Evaluation of the phenolic profile of Castanea sativa Mill. by-products and their antioxidant and antimicrobial activity against multiresistant bacteria. Antioxidants 2020, 9, 87. [Google Scholar] [CrossRef] [PubMed]
- Squillaci, G.; Apone, F.; Sena, L.M.; Carola, A.; Tito, A.; Bimonte, M.; De Lucia, A.; Colucci, G.; La Cara, F.; Morana, A. Chestnut (Castanea sativa Mill.) industrial wastes as a valued bioresource for the production of active ingredients. Process Biochem. 2018, 64, 228–236. [Google Scholar] [CrossRef]
- Esposito, T.; Celano, R.; Pane, C.; Piccinelli, A.L.; Sansone, F.; Picerno, P.; Zaccardelli, M.; Aquino, R.P.; Mencherini, T. Chestnut (Castanea sativa Miller.) burs extracts and functional compounds: UHPLC-UV-HRMS profiling, antioxidant activity, and inhibitory effects on phytopathogenic fungi. Molecules 2019, 24, 302. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Agullo, A.; Freire, M.S.; Antorrena, G.; Pereira, J.A.; Gonzalez-Alvarez, J. Effect of the extraction technique and operational conditions on the recovery of bioactive compounds from chestnut (Castanea sativa) bur and shell. Sep. Sci. Technol. 2014, 49, 267–277. [Google Scholar] [CrossRef]
- Benincasa, C.; Santoro, I.; Nardi, M.; Cassano, A.; Sindona, G. Eco-friendly extraction and characterisation of nutraceuticals from olive leaves. Molecules 2019, 24, 3481. [Google Scholar] [CrossRef] [PubMed]
- Tyśkiewicz, K.; Konkol, M.; Rój, E. The application of supercritical fluid extraction in phenolic compounds isolation from natural plant materials. Molecules 2018, 23, 2625. [Google Scholar] [CrossRef] [PubMed]
- Stefanovic, O.; Comic, L. Synergistic antibacterial interaction between Melissa officinalis extracts and antibiotics. J. Appl. Pharm. Sci. 2012, 2, 1–5. [Google Scholar]
- de Lacerda de Oliveira, L.; de Carvalho, M.V.; Melo, L. Health promoting and sensory properties of phenolic compounds in food. Rev. Ceres 2014, 61, 764–779. [Google Scholar] [CrossRef]
- Takshak, S. Bioactive compounds in medicinal plants: A condensed review. SEJ Pharm. Nat. Med. 2018, 1, 1–35. [Google Scholar]
- Sabaté, J.; Oda, K.; Ros, E. Nut consumption and blood lipid levels: A pooled analysis of 25 intervention trials. Arch. Intern. Med. 2010, 170, 821–827. [Google Scholar] [CrossRef] [PubMed]
- Shahidi, F.; Ambigaipalan, P. Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects—A review. J. Funct. Foods 2015, 18, 820–897. [Google Scholar] [CrossRef]
- Garcia, J.; Afonso, A.; Fernandes, C.; Nunes, F.M.; Marques, G.; Saavedra, M.J. Comparative antioxidant and antimicrobial properties of Lentinula edodes Donko and Koshin varieties against priority multidrug-resistant pathogens. S. Afr. J. Chem. Eng. 2021, 35, 98–106. [Google Scholar] [CrossRef]
- An, J.-Y.; Wang, L.-T.; Lv, M.-J.; Wang, J.-D.; Cai, Z.-H.; Wang, Y.-Q.; Zhang, S.; Yang, Q.; Fu, Y.-J. An efficiency strategy for extraction and recovery of ellagic acid from waste chestnut shell and its biological activity evaluation. Microchem. J. 2021, 160, 105616. [Google Scholar] [CrossRef]
Microorganism | Gram | Liquid Culture Medium, Temperature, and Incubation Time | Selective Culture Medium, Temperature, and Incubation Time |
---|---|---|---|
Escherichia coli O157:H7 9001 | − | BHI, 37 °C, and 24 h/48 h (610495) | TBX (Tryptone Bile X-Glucuronide-84637), 44 °C, and 24 h |
Yersinia enterocolitica ATCC 9018 | − | BHI, 37 °C, and 24 h/48 h (610495) | Yersinia-selective agar base (VWR), 30 °C, and 24 h |
Staphylococcus aureus ATCC | + | BHI, 37 °C, and 24 h/48 h (610495) | BP (Baird Parker (VWR)), 37 °C, and 24 h |
Salmonella ATCC | − | BHI, 37 °C, and 24 h/48 h (610495) | Chromagar Salmonella, 37 °C, and 24 h |
Salmonella typhimurium 14028 | − | BHI, 37 °C, and 24 h/48 h (610495) | Chromagar Salmonella, 37 °C, and 24 h |
Enterococcus faecalis 19433 | + | BHI, 37 °C, and 24 h/48 h (610495) | VRBG (Violet Red Bile Glucose (VWR)), 30 °C, and 24 h/48 h |
Enterococcus faecium 20477 | + | BHI, 37 °C, and 24 h/48 h (610495) | VRBG (Violet Red Bile Glucose-VWR), 30 °C, and 24 h/48 h |
Listeria monocytogenes ATCC 7973 | + | BHI, 37 °C, and 24 h/48 h (610495) | Chromagar Listeria, 37 °C, and 24 h |
Listeria ATCC 7644 | + | BHI, 37 °C, and 24 h/48 h (610495) | Chromagar Listeria, 37 °C, and 24 h |
Pseudomonas JI-Me-LM03 | − | BHI, 37 °C, and 24 h/48 h (610495) | CFC (Pseudomonas-selective agar), 30 °C, and 48 h |
Escherichia coli ATCC 1175 | − | BHI, 37 °C, and 24 h/48 h (610495) | TBX (Tryptone Bile X-Glucuronide-84637), 44 °C, and 24 h |
Microorganism | 1.2% | 1.5% | 1.8% | 2.1% |
---|---|---|---|---|
DDA | DDA | DDA | DDA | |
Escherichia coli O157:H7 9001 | - | - | - | - |
Yersinia enterocolitica ATCC 9018 | - | - | - | - |
Staphylococcus aureus ATCC | - | - | - | 10.26 ± 0.19 |
Salmonella ATCC | - | - | - | - |
Salmonella typhimurium 14028 | - | - | - | - |
Enterococcus faecalis 19433 | - | 7 ± 0.25 | 7.74 ± 0.25 | 8.94 ± 0.41 |
Enterococcus faecium 20477 | - | - | - | - |
Listeria monocytogenes ATCC 7973 | - | 6.22 ± 0.18 | 6.99 ± 0.11 | 8.32 ± 0.06 |
Listeria ATCC 7644 | - | - | - | - |
Pseudomonas JI-Me-LM03 | - | - | - | - |
Escherichia coli ATCC 1175 | - | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ciríaco, M.; Patarata, L.; Moura-Alves, M.; Nunes, F.; Saraiva, C. Antimicrobial Properties of Chestnut Shell Extract as an Ecofriendly Approach for Food Preservation. Biol. Life Sci. Forum 2023, 26, 123. https://doi.org/10.3390/Foods2023-14934
Ciríaco M, Patarata L, Moura-Alves M, Nunes F, Saraiva C. Antimicrobial Properties of Chestnut Shell Extract as an Ecofriendly Approach for Food Preservation. Biology and Life Sciences Forum. 2023; 26(1):123. https://doi.org/10.3390/Foods2023-14934
Chicago/Turabian StyleCiríaco, Maria, Luis Patarata, Márcio Moura-Alves, Fernando Nunes, and Cristina Saraiva. 2023. "Antimicrobial Properties of Chestnut Shell Extract as an Ecofriendly Approach for Food Preservation" Biology and Life Sciences Forum 26, no. 1: 123. https://doi.org/10.3390/Foods2023-14934
APA StyleCiríaco, M., Patarata, L., Moura-Alves, M., Nunes, F., & Saraiva, C. (2023). Antimicrobial Properties of Chestnut Shell Extract as an Ecofriendly Approach for Food Preservation. Biology and Life Sciences Forum, 26(1), 123. https://doi.org/10.3390/Foods2023-14934