A Comparison of the Biometric Characteristics, Physicochemical Composition, Mineral Elements, Nutrients, and Bioactive Compounds of Hylocereus undatus and H. polyrhizus †
Abstract
:1. Introduction
2. Material and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Joshi, M.; Prabhakar, B. Phytoconstituents and pharmaco-therapeutic benefits of pitaya: A wonder fruit. J. Food Biochem. 2020, 44, 13260. [Google Scholar] [CrossRef] [PubMed]
- Donadio, L.C. Pitaya. Rev. Bras. Frutic. 2009, 31, 637–929. [Google Scholar] [CrossRef]
- Kamairudin, N.; Gani, S.S.A.; Masoumi, H.R.F.; Hashim, P. Optimization of natural lipstick formulation based on pitaya (Hylocereus polyrhizus) seed oil using D-optimal mixture experimental design. Molecules 2014, 19, 16672–16683. [Google Scholar] [CrossRef] [PubMed]
- Truc-Lin, L.; Huynh, N.; Quintela-Alonso, P. Dragon fruit: A review of health benefits and nutrients and its sustainable development under climate changes in Vietnam. Czech J. Food Sci. 2021, 39, 71–94. [Google Scholar]
- Choo, W.S.; Yong, W.K. Antioxidant properties of two species of Hylocereus fruits. Adv. Appl. Sci. Res. 2011, 2, 418–425. [Google Scholar]
- Wu, L.C.; Hsu, H.W.; Chen, Y.C.; Chiu, C.C.; Lin, Y.I.; Ho, J.A.A. Antioxidant and antiproliferative activities of red pitaya. Food Chem. 2006, 95, 319–327. [Google Scholar] [CrossRef]
- Abreu, W.C.D.; Lopes, C.D.O.; Pinto, K.M.; Oliveira, L.A.; Carvalho, G.B.M.D.; Barcelo, M.D.F.P. Physicochemical characteristics and total antioxidant activity of red and white pitaya. Rev. Do Inst. Adolfo. Lutz. (Impresso) 2012, 71, 656–661. [Google Scholar] [CrossRef]
- Cordeiro, M.H.M.; Silva, J.; Mizobutsi, G.P.; Mizobutsi, E.H.; Mota, W. Caracterização física, química e nutricional da pitaia-rosa de polpa vermelha. Rev. Bras. De Frutic. 2015, 37, 20–26. [Google Scholar] [CrossRef]
- Omidizadeh, A.; Yusof, R.M.; Roohinejad, S.; Ismail, A.; Bakar, M.Z.A.; Bekhit, A.E.D.A. Anti-diabetic activity of red pitaya (Hylocereus polyrhizus) fruit. RSC Adv. 2014, 4, 62978–62986. [Google Scholar] [CrossRef]
- Institute Adolfo Lutz. Normas Analíticas do Instituto Adolfo Lutz: Métodos Químicos e Físicos Para Análises de Alimentos, 4th ed.; Institute Adolfo Lutz: Brasília, Brazil, 2005; p. 1018.
- Association of Official Analytical Chemists (AOAC). Official Methods of Analysis. In Official Methods of Analysis of the AOAC International, 19th ed.; Association of Official Analytical Chemists (AOAC): Gaithersburg, MD, USA, 2012. [Google Scholar]
- Pinheiro Sant’Ana, H.M.P.; Guinazi, M.; da Silva Oliveira, D.; Della Lucia, C.M.; de Lazzari Reis, B.; Brandão, S.C.C. Method for simultaneous analysis of eight vitamin E isomers in various foods by high performance liquid chromatography and fluorescence detection. J. Chromatogr. A 2011, 1218, 8496–8502. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Amaya, D.B. Assessment of the provitamin A contents of foods—The Brazilian experience. J. Food Compos. Anal. 1996, 9, 196–230. [Google Scholar] [CrossRef]
- Yang, L.; Allred, K.F.; Geera, B.; Allred, C.D.; Awika, J.M. Sorghum phenolics demonstrate estrogenic action and induce apoptosis in nonmalignant colonocytes. Nutr. Cancer 2012, 64, 419–427. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, L.D.M.; Montini, T.A.; Pinheiro, S.S.; Pinheiro Sant’Ana, H.M.; Martino, H.S.D.; Moreira, A.V.B. Effects of processing with dry heat and wet heat on the antioxidant profile of sorghum. Food Chem. 2014, 152, 210–217. [Google Scholar] [CrossRef] [PubMed]
- Gallori, S.; Bilia, A.R.; Bergonzi, M.C.; Barbosa, W.L.R.; Vincieri, F.F. Polyphenolic constituents of fruit pulp of Euterpe oleracea Mart. (açai palm). Chromatographia 2004, 59, 739–743. [Google Scholar] [CrossRef]
- Schauss, A.G.; Wu, X.; Prior, R.L.; Ou, B.; Patel, D.; Huang, D.; Kababick, J.P. Phytochemical and nutrient composition of the freeze-dried Amazonian palm berry, Euterpe oleraceae Mart. (Acai). J. Agric. Food Chem. 2006, 54, 8598–8603. [Google Scholar] [CrossRef] [PubMed]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. In Methods in Enzymology; Academic Press: Cambridge, MA, USA, 1999; Volume 299, pp. 152–178. [Google Scholar]
- Bloor, S.J. Flavonoids and other polyphenols. In Methods in Enzymology; Elsevier: Amsterdam, The Netherlands, 2001. [Google Scholar]
- Lima, C.A.; Faleiro, F.G.; Junqueira, N.T.V. Diversidade genética intra e interespecífica de Dragon fruit com base nas características físico-químicas de frutos. Rev. Bras. De Frutic. 2013, 35, 1066–1072. [Google Scholar] [CrossRef]
- Jerônimo, M.C.; Orsine, J.V.C.; Borges, K.K.; Novaes, M.R.C.G. Chemical and physical-chemical properties, antioxidant activity and fatty acids profile of red pitaya [Hylocereus undatus (Haw.) Britton & Rose] grown in Brazil. J. Drug Metab. Toxicol. 2015, 6, 1–6. [Google Scholar]
- Adnan, L.; Osman, A.; Abdul Hamid, A. Antioxidant activity of different extracts of red pitaya (Hylocereus polyrhizus) seed. Int. J. Food Prop. 2011, 14, 1171–1181. [Google Scholar] [CrossRef]
- Fan, R.; Sun, Q.; Zeng, J.; Zhang, X. Contribution of anthocyanin pathways to fruit flesh coloration in pitayas. BMC Plant Biol. 2020, 20, 1–12. [Google Scholar] [CrossRef] [PubMed]
Parameters | Pitaya | |
---|---|---|
White Pulp | Red Pulp | |
Biometric feature | ||
Length (cm) | 8.00 ± 0.33 a | 7.24 ± 0.22 b |
Diameter (cm) | 6.89 ± 0.69 a | 6.68 ± 0.40 a |
Weight of the fruit (g) | 227.02 ± 8.88 a | 196.79 ± 9.02 a |
Weight of the pulp (g) | 131.22 ± 37.08 a | 115.20 ±17.44 a |
Weight of the peel (g) | 95.38 ± 1.96 a | 81.63 ± 1.631 a |
Physical–chemical composition 1 | ||
pH | 4.37 ± 0.21 a | 3.78 ± 0.12 b |
Soluble solids | 14.86 ± 0.97 a | 13.34 ± 0.55 b |
Acidity (% citric acid) | 0.41 ± 0.02 a | 0.40 ± 0.02 a |
Total dietary fiber 3 (g·100 g−1) | 2.19 ± 0.15 | 2.31 ± 0.49 |
Insoluble fiber 3 (g·100 g−1) | 1.81 ± 0.12 | 2.02 ± 0.31 |
Soluble fiber 3 (g·100 g−1) | 0.38 ± 0.02 | 0.29 ± 0.18 |
Centesimal composition (g·100 g−1) | ||
Moisture | 85.16 ± 0.60 a | 84.37 ± 0.90 a |
Lipids 2 | 0.39 ± 0.08 a | 0.44 ± 0.05 a |
Total ash 2 | 0.30 ± 0.00 a | 0.27 ± 0.10 a |
Proteins 2 | 0.43 ± 0.05 a | 0.41 ± 0.18 a |
Carbohydrates 2 | 11.51 ± 0.08 a | 12.18 ± 0.24 a |
Energy value (kcal·100 g−1) | 51.27 | 54.32 |
Variables | Pitaya 1 | |
---|---|---|
White Pulp | Red Pulp | |
Total vitamin E (µg·100 g−1) | 100.00 a | 140.76 b |
α-tocopherol | 70.46 ± 4.01 a | 85.71 ±1.46 b |
α-tocotrienol | 11.53 ± 0.55 a | 16.03 ± 1.58 b |
β-tocopherol | 4.21 ± 0.51 a | 1.12 ± 0.08 b |
β-tocotrienol | Nd | Nd |
γ-tocopherol | 13.80 ± 0.71 a | 33.07 ± 3.06 b |
γ-tocotrienol | Nd | 4.83 ± 0.52 a |
δ-tocopherol | Nd | Nd |
δ-tocotrienol | Nd | Nd |
Carotenoids (µg·100 g−1) | ||
α-carotene | 110.21 ± 5.51 a | 92.51 ± 8.46 b |
β-carotene | 19.92 ± 0.58 a | 15.73 ± 0.39 b |
Lutein | Nd | Nd |
Flavanones (µg·100 g−1) | ||
eriodictyol | 178.75 ± 8.48 a | Nd |
naringenin | Nd | Nd |
Anthocyanin (µg·100 g−1) | ||
cyanidin 3-glycoside | Nd | 3604.574 ± 77.00 a |
cyanidin 3-rutinoside | Nd | 2350.036 ± 27.45 a |
Total phenolics (mg GAE·100 g−1) | 52.11 ± 4.57 a | 52.83 ± 7.05 a |
Antioxidant capacity (AAT%) | 27.11 ± 1.94 a | 36.41 ± 1.28 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva e Souza, C.; Anunciação, P.C.; Della Lucia, C.M.; Rodrigues das Dôres, R.G.; de M. Milagres, R.C.R.; Pinheiro Sant’Ana, H.M. A Comparison of the Biometric Characteristics, Physicochemical Composition, Mineral Elements, Nutrients, and Bioactive Compounds of Hylocereus undatus and H. polyrhizus. Biol. Life Sci. Forum 2023, 26, 114. https://doi.org/10.3390/Foods2023-15151
Silva e Souza C, Anunciação PC, Della Lucia CM, Rodrigues das Dôres RG, de M. Milagres RCR, Pinheiro Sant’Ana HM. A Comparison of the Biometric Characteristics, Physicochemical Composition, Mineral Elements, Nutrients, and Bioactive Compounds of Hylocereus undatus and H. polyrhizus. Biology and Life Sciences Forum. 2023; 26(1):114. https://doi.org/10.3390/Foods2023-15151
Chicago/Turabian StyleSilva e Souza, Clarice, Pamella C. Anunciação, Ceres M. Della Lucia, Rosana G. Rodrigues das Dôres, Regina Célia R. de M. Milagres, and Helena M. Pinheiro Sant’Ana. 2023. "A Comparison of the Biometric Characteristics, Physicochemical Composition, Mineral Elements, Nutrients, and Bioactive Compounds of Hylocereus undatus and H. polyrhizus" Biology and Life Sciences Forum 26, no. 1: 114. https://doi.org/10.3390/Foods2023-15151
APA StyleSilva e Souza, C., Anunciação, P. C., Della Lucia, C. M., Rodrigues das Dôres, R. G., de M. Milagres, R. C. R., & Pinheiro Sant’Ana, H. M. (2023). A Comparison of the Biometric Characteristics, Physicochemical Composition, Mineral Elements, Nutrients, and Bioactive Compounds of Hylocereus undatus and H. polyrhizus. Biology and Life Sciences Forum, 26(1), 114. https://doi.org/10.3390/Foods2023-15151