Determining the Effect of Plant Extracts on the Development and Characterization of Biodegradable Composite Films from Corypha umbraculifera L. Stem Starch †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Isolation of Plant Extracts
2.3. Preparation of Talipot Starch-CMC Composite Films
2.4. Morphological Properties
2.5. Crystalline Properties
2.6. Opacity
2.7. Barrier Properties
2.8. Antimicrobial Activity
2.9. Biodegradation Study
2.10. Statistical Analysis
3. Result and Discussion
3.1. Morphological Properties
3.2. Crystalline Properties
3.3. Opacity
3.4. Barrier Properties
3.5. Antibacterial Activity
3.6. Biodegradability Properties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Boeira, C.P.; Flores, D.C.B.; Alves, J.D.S.; de Moura, M.R.; Melo, P.T.S.; Rolim, C.M.B.; Nogueira-Librelotto, D.R.; da Rosa, C.S. Effect of Corn Stigma Extract on Physical and Antioxidant Properties of Biodegradable and Edible Gelatin and Corn Starch Films. Int. J. Biol. Macromol. 2022, 208, 698–706. [Google Scholar] [CrossRef]
- Ceballos, R.L.; Ochoa-Yepes, O.; Goyanes, S.; Bernal, C.; Famá, L. Effect of Yerba Mate Extract on the Performance of Starch Films Obtained by Extrusion and Compression Molding as Active and Smart Packaging. Carbohydr. Polym. 2020, 244, 116495. [Google Scholar] [CrossRef] [PubMed]
- Ghoshal, G.; Singh, D. Synthesis and Characterization of Starch Nanocellulosic Films Incorporated with Eucalyptus Globulus Leaf Extract. Int. J. Food Microbiol. 2020, 332, 108765. [Google Scholar] [CrossRef]
- Baek, S.K.; Kim, S.; Song, K. Bin Cowpea Starch Films Containing Maqui Berry Extract and Their Application in Salmon Packaging. Food Packag. Shelf Life 2019, 22, 100394. [Google Scholar] [CrossRef]
- Aaliya, B.; Sunooj, K.V.; John, N.E.; Navaf, M.; Akhila, P.P.; Sudheesh, C.; Sabu, S.; Sasidharan, A.; Mir, S.A.; George, J. Impact of Microwave Irradiation on Chemically Modified Talipot Starches: A Characterization Study on Heterogeneous Dual Modifications. Int. J. Biol. Macromol. 2022, 209, 1943–1955. [Google Scholar] [CrossRef]
- Aaliya, B.; Sunooj, K.V.; Navaf, M.; Akhila, P.P.; Sudheesh, C.; Sabu, S.; Sasidharan, A.; Mir, S.A.; George, J.; Khaneghah, A.M. Effect of Low Dose γ-Irradiation on the Structural and Functional Properties, and in Vitro Digestibility of Ultrasonicated Stem Starch from Corypha umbraculifera L. Appl. Food Res. 2021, 1, 100013. [Google Scholar] [CrossRef]
- Dasgupta, T.; Rao, A.R.; Yadava, P.K. Chemomodulatory Action of Curry Leaf (Murraya Koenigii) Extract on Hepatic and Extrahepatic Xenobiotic Metabolising Enzymes, Antioxidant Levels, Lipid Peroxidation, Skin and Forestomach Papillomagenesis. Nutr. Res. 2003, 23, 1427–1446. [Google Scholar] [CrossRef]
- Ali, A.; Shahid, M.A.; Hossain, M.D.; Islam, M.N. Antibacterial Bi-Layered Polyvinyl Alcohol (PVA)-Chitosan Blend Nanofibrous Mat Loaded with Azadirachta Indica (Neem) Extract. Int. J. Biol. Macromol. 2019, 138, 13–20. [Google Scholar] [CrossRef]
- Mittal, R.; Kumar, R.; Chahal, H. Antimicrobial Activity of Ocimum Sanctum Leaves Extracts and Oil. J. Drug Deliv. Ther. 2018, 8, 201–204. [Google Scholar] [CrossRef]
- Annu; Ali, A.; Ahmed, S. Eco-Friendly Natural Extract Loaded Antioxidative Chitosan/Polyvinyl Alcohol Based Active Films for Food Packaging. Heliyon 2021, 7, e06550. [Google Scholar] [CrossRef]
- Silva, V.D.M.; Macedo, M.C.C.; Rodrigues, C.G.; dos Santos, A.N.; Loyola, A.C.D.F.E.; Fante, C.A. Biodegradable Edible Films of Ripe Banana Peel and Starch Enriched with Extract of Eriobotrya Japonica Leaves. Food Biosci. 2020, 38, 100750. [Google Scholar] [CrossRef]
- Oun, A.A.; Rhim, J.W. Preparation of Multifunctional Carboxymethyl Cellulose-Based Films Incorporated with Chitin Nanocrystal and Grapefruit Seed Extract. Int. J. Biol. Macromol. 2020, 152, 1038–1046. [Google Scholar] [CrossRef]
- Aaliya, B.; Sunooj, K.V.; Navaf, M.; Akhila, P.P.; Sudheesh, C.; Sabu, S.; Sasidharan, A.; Sinha, S.K.; George, J. Influence of Plasma-Activated Water on the Morphological, Functional, and Digestibility Characteristics of Hydrothermally Modified Non-Conventional Talipot Starch. Food Hydrocoll. 2022, 130, 107709. [Google Scholar] [CrossRef]
- Kumar, R.; Ghoshal, G.; Goyal, M. Effect of Basil Leaves Extract on Modified Moth Bean Starch Active Film for Eggplant Surface Coating. LWT—Food Sci. Technol. 2021, 145, 111380. [Google Scholar] [CrossRef]
- Sudheesh, C.; Sunooj, K.V.; Sasidharan, A.; Sabu, S.; Basheer, A.; Navaf, M.; Raghavender, C.; Sinha, S.K.; George, J. Energetic Neutral N2 Atoms Treatment on the Kithul (Caryota Urens) Starch Biodegradable Film: Physico-Chemical Characterization. Food Hydrocoll. 2020, 103, 105650. [Google Scholar] [CrossRef]
- Akhila, P.P.; Sunooj, K.V.; Aaliya, B.; Navaf, M.; Sudheesh, C.; Yadav, D.N.; Khan, M.A.; Mir, S.A.; George, J. Morphological, Physicochemical, Functional, Pasting, Thermal Properties and Digestibility of Hausa Potato (Plectranthus Rotundifolius) Flour and Starch. Appl. Food Res. 2022, 2, 100193. [Google Scholar] [CrossRef]
- ASTM. E96-93 Standard Test Methods for Water Vapor Transmission of Materials. In Annual Book of ASTM Standards; American Society for Testing and Materials: Philadelphia, PA, USA, 1993. [Google Scholar]
- Sudheesh, C.; Sunooj, K.V.; Aaliya, B.; Navaf, M.; Akhila, P.P.; Mir, S.A.; Sabu, S.; Sasidharan, A.; Sudheer, K.P.; Sinha, S.K.; et al. Effect of Energetic Neutrals on the Kithul Starch Retrogradation; Potential Utilization for Improving Mechanical and Barrier Properties of Films. Food Chem. 2023, 398, 133881. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Lei, Y.; Lu, J.; Zhu, R.; Xiao, D.; Jiao, C.; Xia, R.; Zhang, Z.; Shen, G.; Liu, Y.; et al. Effect of Citric Acid Induced Crosslinking on the Structure and Properties of Potato Starch/Chitosan Composite Films. Food Hydrocoll. 2019, 97, 105208. [Google Scholar] [CrossRef]
- Oluwasina, O.O.; Olaleye, F.K.; Olusegun, S.J.; Oluwasina, O.O.; Mohallem, N.D.S. Influence of Oxidized Starch on Physicomechanical, Thermal Properties, and Atomic Force Micrographs of Cassava Starch Bioplastic Film. Int. J. Biol. Macromol. 2019, 135, 282–293. [Google Scholar] [CrossRef]
- Talón, E.; Trifkovic, K.T.; Nedovic, V.A.; Bugarski, B.M.; Vargas, M.; Chiralt, A.; González-Martínez, C. Antioxidant Edible Films Based on Chitosan and Starch Containing Polyphenols from Thyme Extracts. Carbohydr. Polym. 2017, 157, 1153–1161. [Google Scholar] [CrossRef]
- Kowalczyk, D.; Szymanowska, U.; Skrzypek, T.; Basiura-Cembala, M.; Materska, M.; Łupina, K. Corn Starch and Methylcellulose Edible Films Incorporated with Fireweed (Chamaenerion angustifolium L.) Extract: Comparison of Physicochemical and Antioxidant Properties. Int. J. Biol. Macromol. 2021, 190, 969–977. [Google Scholar] [CrossRef] [PubMed]
- Medina Jaramillo, C.; Gutiérrez, T.J.; Goyanes, S.; Bernal, C.; Famá, L. Biodegradability and Plasticizing Effect of Yerba Mate Extract on Cassava Starch Edible Films. Carbohydr. Polym. 2016, 151, 150–159. [Google Scholar] [CrossRef] [PubMed]
- Luchese, C.L.; Uranga, J.; Spada, J.C.; Tessaro, I.C.; de la Caba, K. Valorisation of Blueberry Waste and Use of Compression to Manufacture Sustainable Starch Films with Enhanced Properties. Int. J. Biol. Macromol. 2018, 115, 955–960. [Google Scholar] [CrossRef] [PubMed]
- Sudheesh, C.; Sunooj, K.V.; Jamsheer, V.; Sabu, S.; Sasidharan, A.; Aaliya, B.; Navaf, M.; Akhila, P.P.; George, J. Development of Bioplastic Films from Γ−Irradiated Kithul (Caryota urens) Starch; Morphological, Crystalline, Barrier, and Mechanical Characterization. Starch/Staerke 2021, 73, 2000135. [Google Scholar] [CrossRef]
Samples | Ra (nm) | RC (%) | Opacity (AU/mm) |
---|---|---|---|
TSF | 20.32 ± 0.07 a | 2.03 ± 0.02 a | 1.55 ± 0.03 a |
CTSF | 28.13 ± 0.17 d | 2.45 ± 0.02 b | 3.63 ± 0.02 c |
NTSF | 25.14 ± 0.28 c | 2.89 ± 0.13 c | 5.21 ± 0.10 b |
TTSF | 22.99 ± 0.12 b | 3.52 ± 0.07 e | 4.04 ± 0.06 c |
MTSF | 29.13 ± 0.21 e | 3.10 ± 0.22 d | 4.61 ± 0.04 d |
Samples | Inhibition Zone Diameter (mm) | |
---|---|---|
S. aureus | E. coli | |
TSF | - | - |
CTSF | 20.01 ± 0.27 b | 22.13 ± 0.13 c |
NTSF | 18.14 ± 0.18 a | 17.16 ± 0.31 a |
TTSF | 20.97 ± 0.22 c | 19.71 ± 0.07 b |
MTSF | 22.13 ± 0.11 d | 24.83 ± 0.12 d |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aaliya, B.; Sunooj, K.V.; Krina, P. Determining the Effect of Plant Extracts on the Development and Characterization of Biodegradable Composite Films from Corypha umbraculifera L. Stem Starch. Biol. Life Sci. Forum 2022, 20, 13. https://doi.org/10.3390/IECBM2022-13393
Aaliya B, Sunooj KV, Krina P. Determining the Effect of Plant Extracts on the Development and Characterization of Biodegradable Composite Films from Corypha umbraculifera L. Stem Starch. Biology and Life Sciences Forum. 2022; 20(1):13. https://doi.org/10.3390/IECBM2022-13393
Chicago/Turabian StyleAaliya, Basheer, Kappat Valiyapeediyekkal Sunooj, and Patel Krina. 2022. "Determining the Effect of Plant Extracts on the Development and Characterization of Biodegradable Composite Films from Corypha umbraculifera L. Stem Starch" Biology and Life Sciences Forum 20, no. 1: 13. https://doi.org/10.3390/IECBM2022-13393