Development of Potential Functional Biscuits with the Incorporation of Tannat Grape Pomace and Sweetener †
Abstract
:1. Introduction
2. Methods
2.1. Biscuits’ Formulation
2.2. Determination of Bioactive Properties
2.2.1. Total Polyphenol Content
2.2.2. Antioxidant Capacity
2.2.3. Antidiabetic Capacity
2.2.4. Antiobesity Capacity
2.2.5. Identification of TGP Phenolic Compounds
2.3. Statistical Analysis
3. Results and Discussion
3.1. Total Polyphenol Content and Antioxidant Capacity
3.2. Antidiabetic and Antiobesity Capacity
3.3. Phenolic Compounds of TGP
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ghazanfar, S.; Ali, G.M.; Abid, R.; Farid, A.; Akhtar, N.; Batool, N.A.; Khalid, S.; Okla, M.K.; Al-Amri, S.S.; Alwasel, Y.A.; et al. An Overview of Functional Food. In Current Topics in Functional Food; Shiomi, N., Savitskaya, A., Eds.; IntechOpen: London, UK, 2022. [Google Scholar] [CrossRef]
- Martirosyan, D.; Lampert, T.; Ekblad, M. Classification and Regulation of Functional Food Proposed by the Functional Food Center. Funct. Food Sci. 2022, 2, 25. [Google Scholar] [CrossRef]
- Olt, V.; Baéz, J.; Jorcin, S.; Tomás, L.-P.; Fernández-Fernández, A.M.; Medrano, A. Encapsulated Bioactive Compounds from a Winemaking Byproduct for Its Application as Functional Ingredient in Yogurt. Agrociencia Urug. 2022, 25, e794. [Google Scholar] [CrossRef]
- Fernández-Fernández, A.M.; Iriondo-DeHond, A.; Dellacassa, E.; Medrano-Fernandez, A.; del Castillo, M.D. Assessment of Antioxidant, Antidiabetic, Antiobesity, and Anti-Inflammatory Properties of a Tannat Winemaking by-Product. Eur. Food Res. Technol. 2019, 245, 1539–1551. [Google Scholar] [CrossRef]
- Chedea, V.S.; Palade, L.M.; Marin, D.E.; Pelmus, R.S.; Habeanu, M.; Rotar, M.C.; Gras, M.A.; Pistol, G.C.; Taranu, I. Intestinal Absorption and Antioxidant Activity of Grape Pomace Polyphenols. Nutrients 2018, 10, 588. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martins, I.M.; Macedo, G.A.; Macedo, J.A. Biotransformed Grape Pomace as a Potential Source of Anti-Inflammatory Polyphenolics: Effects in Caco-2 Cells. Food Biosci. 2020, 35, 100607. [Google Scholar] [CrossRef]
- Molnar, D.; Novotni, D.; Krisch, J.; Bosiljkov, T.; Ščetar, M. The Optimisation of Biscuit Formulation with Grape and Aronia Pomace Powders as Cocoa Substitutes. Hrvat. časopis za prehrambenu Tehnol. Biotehnol. i Nutr. 2020, 15, 38–44. [Google Scholar] [CrossRef]
- Ministerio de Salud Pública MERCOSUR/GMC/RES. N° 01/12 Reglamento Tecnico Mercosur Sobre Informacion Nutricional Complementaria (Declaraciones de Propiedades Nutricionales). Available online: https://www.impo.com.uy/bases/decretos-internacional/402-2012/1 (accessed on 7 August 2022).
- Boido, E.; García-Marino, M.; Dellacassa, E.; Carrau, F.; Rivas-Gonzalo, J.C.; Escribano-Bailón, M.T. Characterisation and Evolution of Grape Polyphenol Profiles of Vitis Vinifera L. Cv. Tannat during Ripening and Vinification. Aust. J. Grape Wine Res. 2011, 17, 383–393. [Google Scholar] [CrossRef]
- Iuga, M.; Mironeasa, S. Potential of Grape Byproducts as Functional Ingredients in Baked Goods and Pasta. Compr. Rev. Food Sci. Food Saf. 2020, 19, 2473–2505. [Google Scholar] [CrossRef] [PubMed]
- Theagarajan, R.; Malur Narayanaswamy, L.; Dutta, S.; Moses, J.A.; Chinnaswamy, A. Valorisation of Grape Pomace (Cv. Muscat) for Development of Functional Cookies. Int. J. Food Sci. Technol. 2019, 54, 1299–1305. [Google Scholar] [CrossRef]
- Fernandes, A.C.F.; Martins, I.M.; Moreira, D.K.T.; Macedo, G.A. Use of Agro-Industrial Residues as Potent Antioxidant, Antiglycation Agents, and α-Amylase and Pancreatic Lipase Inhibitory Activity. J. Food Process. Preserv. 2020, 44, e14397. [Google Scholar] [CrossRef]
- Fernández-Fernández, A.M.; Dellacassa, E.; Nardin, T.; Larcher, R.; Ibañez, C.; Terán, D.; Gámbaro, A.; Medrano-Fernandez, A.; Del Castillo, M.D. Tannat Grape Skin: A Feasible Ingredient for the Formulation of Snacks with Potential for Reducing the Risk of Diabetes. Nutrients 2022, 14, 419. [Google Scholar] [CrossRef] [PubMed]
Rt (min) | Area | Compound | ||
---|---|---|---|---|
Chromatogram 280 nm | 6.496 | 34,450 | cis-caftaric acid | phenolic acids |
6.893 | 90,891 | trans-caftaric acid | ||
8.730 | 225,597 | protocatechuic acid | ||
12.313 | 265,757 | trans-cutaric acid | ||
12.457 | 573,977 | p-coumaroyl hexose | ||
4.628 | 39,983 | procyanidin trimer C2 | flavan-3-ols | |
7.453 | 181,179 | procyanidin dimer B1 | ||
8.022 | 303,632 | procyanidin dimer B3 | ||
8.306 | 436,692 | (+)-catechin | ||
9.104 | 199,322 | procyanidin trimer | ||
10.608 | 1,127,900 | procyanidin trimer | ||
11.459 | 328,747 | procyanidin dimer B4 | ||
11.832 | 204,148 | procyanidin dimer B6 | ||
12.457 | 839,734 | (−)-epicatechin | ||
15.757 | 107,028 | procyanidin dimer galloylated | ||
16.024 | 89,969 | procyanidin trimer | ||
16.324 | 341,893 | procyanidin trimer | ||
17.158 | 161,716 | procyanidin dimer B2 | ||
17.579 | 302,107 | procyanidin dimer galloylated | ||
22.827 | 200,876 | procyanidin dimer B7 | ||
19.665 | 79,965 | myricetin-3-O-galactoside | flavonols | |
21.814 | 31,333 | myricetin-3-O-glucoside | ||
22.689 | 65,749 | quercetin-3-O-galactoside | ||
23.466 | 162,693 | quercetin-3-O-glucoside | ||
26.790 | 71,502 | siringetin-3-O-glucoside | ||
28.236 | 160,861 | quercetin-7-O-neohesperidoside | ||
35.226 | 57,127 | quercetin aglycone | ||
Chromatogram 520 nm | 0 | delphinidin-3-O-glucoside | anthocyanins | |
0 | cyanidin-3-O-glucoside | |||
17.573 | 52,866 | petunidin-3-O-glucoside | ||
19.744 | 74,672 | peonidin-3-O-glucoside | ||
20.804 | 882,877 | malvidin-3-O-glucoside | ||
0 | delphinidin-3-O-(6′-acetyl)glucoside | |||
26.547 | 34,547 | petunidin-3-O-(6′-acetyl)glucoside | ||
28.848 | 13,166 | peonidin-3-O-(6′-acetyl)glucoside | ||
29.545 | 211,121 | malvidin-3-O-(6′-acetyl)glucoside | ||
30.385 | 72,350 | delphinidin-3-O-(6′-p-coumaroyl)glucoside | ||
32.285 | 192,783 | malvidin-3-O-(6′-caffeoyl)glucoside | ||
32.677 | 28,817 | cianidin-3-O-(6′-p-coumaroyl)glucoside | ||
33.362 | 308,975 | petunidin-3-O-(6′-p-coumaroyl)glucoside | ||
35.785 | 195,123 | peonidin-3-O-(6′-p-coumaroyl)glucoside | ||
36.079 | 2,268,418 | malvidin-3-O-(6′-p-coumaroyl)glucoside |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olt, V.; Báez, J.; Curbelo, R.; Boido, E.; Dellacassa, E.; Fernández-Fernández, A.M.; Medrano, A. Development of Potential Functional Biscuits with the Incorporation of Tannat Grape Pomace and Sweetener. Biol. Life Sci. Forum 2022, 18, 50. https://doi.org/10.3390/Foods2022-13067
Olt V, Báez J, Curbelo R, Boido E, Dellacassa E, Fernández-Fernández AM, Medrano A. Development of Potential Functional Biscuits with the Incorporation of Tannat Grape Pomace and Sweetener. Biology and Life Sciences Forum. 2022; 18(1):50. https://doi.org/10.3390/Foods2022-13067
Chicago/Turabian StyleOlt, Victoria, Jessica Báez, Romina Curbelo, Eduardo Boido, Eduardo Dellacassa, Adriana Maite Fernández-Fernández, and Alejandra Medrano. 2022. "Development of Potential Functional Biscuits with the Incorporation of Tannat Grape Pomace and Sweetener" Biology and Life Sciences Forum 18, no. 1: 50. https://doi.org/10.3390/Foods2022-13067
APA StyleOlt, V., Báez, J., Curbelo, R., Boido, E., Dellacassa, E., Fernández-Fernández, A. M., & Medrano, A. (2022). Development of Potential Functional Biscuits with the Incorporation of Tannat Grape Pomace and Sweetener. Biology and Life Sciences Forum, 18(1), 50. https://doi.org/10.3390/Foods2022-13067