Bioactive Ingredients of Custard Apple (Annona cherimola Mill.) by-Products as an Industrial Interest for the Development of Products with High Added Value †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Extraction of Custard Apple Agro-industrial By-products
2.2. HPLC-ESI-qTOF-MS Analysis
2.3. In Vitro Assays for Bioactive Determination of Phenolic Compounds in Custard Apple By-Products
2.3.1. Evaluation of In Vitro Antioxidant Potential
2.3.2. Evaluation of Free Radical and ROS Scavenging Potential
2.3.3. Evaluation of Enzymatic Inhibition Potential
3. Results and Discussion
3.1. Characterization of Custard Apple Seed and Peel Extracts by HPLC-ESI-qTOF-MS
3.2. Evaluation of Total Phenol Content and Antioxidant Capacity Using TEAC, FRAP and ORAC
3.3. Evaluation of Free Radical and ROS/RNS Scavenging Potential
3.4. Evaluation of Enzymatic Inhibition Capacity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Butu, M.; Rodino, S. 11—Fruit and Vegetable-Based Beverages—Nutritional Properties and Health Benefits. In Natural Beverages; Grumezescu, A.M., Holban, A.M., Eds.; Academic Press: Cambridge, MA, USA, 2019; Volume 13, pp. 303–338. [Google Scholar]
- Jamkhande, P.G.; Ajgunde, B.R.; Jadge, D.R. Annona cherimola Mill. (Custard Apple): A Review on Its Plant Profile, Nutritional Values, Traditional Claims and Ethnomedicinal Properties. Orient. Pharm. Exp. Med. 2017, 17, 189–201. [Google Scholar] [CrossRef]
- Albuquerque, T.G.; Santos, F.; Sanches-Silva, A.; Beatriz Oliveira, M.; Bento, A.C.; Costa, H.S. Nutritional and Phytochemical Composition of Annona cherimola Mill. Fruits and by-Products: Potential Health Benefits. Food Chem. 2016, 193, 187–195. [Google Scholar] [CrossRef] [PubMed]
- Díaz-De-Cerio, E.; Aguilera-Saez, L.M.; María Gómez-Caravaca, A.; Verardo, V.; Fernández-Gutiérrez, A.; Fernández, I.; Arráez-Román, D.; Laganà, A.; Capriotti, A.L.; Cavaliere, C. Characterization of Bioactive Compounds of Annona cherimola L. Leaves Using a Combined Approach Based on HPLC-ESI-TOF-MS and NMR Published in the Topical Collection Discovery of Bioactive Compounds with Guest Editors. Anal. Bioanal. Chem. 2018, 410, 3607–3619. [Google Scholar] [CrossRef] [PubMed]
- Barreca, D.; Laganà, G.; Ficarra, S.; Tellone, E.; Leuzzi, U.; Galtieri, A.; Bellocco, E. Evaluation of the Antioxidant and Cytoprotective Properties of the Exotic Fruit Annona cherimola Mill. (Annonaceae). Food Res. Int. 2011, 44, 2302–2310. [Google Scholar] [CrossRef]
- Mannino, G.; Gentile, C.; Porcu, A.; Agliassa, C.; Caradonna, F.; Bertea, C.M. Chemical Profile and Biological Activity of Cherimoya (Annona cherimola Mill.) and Atemoya (Annona atemoya) Leaves. Molecules 2020, 25, 2612. [Google Scholar] [CrossRef] [PubMed]
- Santos, S.A.O.; Vilela, C.; Camacho, J.F.; Cordeiro, N.; Gouveia, M.; Freire, C.S.R.; Silvestre, A.J.D. Profiling of Lipophilic and Phenolic Phytochemicals of Four Cultivars from Cherimoya (Annona cherimola Mill.). Food Chem. 2016, 211, 845–852. [Google Scholar] [CrossRef] [PubMed]
- Kammeyer, A.; Luiten, R.M. Oxidation Events and Skin Aging. Ageing Res. Rev. 2015, 21, 16–29. [Google Scholar] [CrossRef] [PubMed]
- Działo, M.; Mierziak, J.; Korzun, U.; Preisner, M.; Szopa, J.; Kulma, A. The Potential of Plant Phenolics in Prevention and Therapy of Skin Disorders. Int. J. Mol. Sci. 2016, 17, 160. [Google Scholar] [CrossRef] [PubMed]
- Gu, L.; House, S.E.; Wu, X.; Ou, B.; Prior, R.L. Procyanidin and Catechin Contents and Antioxidant Capacity of Cocoa and Chocolate Products. J. Agric. Food Chem. 2006, 54, 4057–4061. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Li, L.; Wang, B. Poncirin Ameliorates Oxygen Glucose Deprivation/Reperfusion Injury in Cortical Neurons via Inhibiting NOX4-Mediated NLRP3 Inflammasome Activation. Int. Immunopharmacol. 2022, 102, 107210. [Google Scholar] [CrossRef] [PubMed]
- Cádiz-Gurrea, M.D.L.L.; Villegas-Aguilar, M.D.C.; Leyva-Jiménez, F.J.; Pimentel-Moral, S.; Fernández-Ochoa, Á.; Alañón, M.E.; Segura-Carretero, A. Revalorization of Bioactive Compounds from Tropical Fruit By-Products and Industrial Applications by Means of Sustainable Approaches. Food Res. Int. 2020, 138, 109786. [Google Scholar] [CrossRef] [PubMed]
- Chai, W.-M.; Lin, M.-Z.; Wang, Y.-X.; Xu, K.-L.; Huang, W.-Y.; Pan, D.-D.; Zou, Z.-R.; Peng, Y.-Y. Inhibition of Tyrosinase by Cherimoya Pericarp Proanthocyanidins: Structural Characterization, Inhibitory Activity and Mechanism. Food Res. Int. 2017, 100, 731–739. [Google Scholar] [CrossRef] [PubMed]
- Leyva-Jiménez, F.J.; Ruiz-Malagón, A.J.; Molina-Tijeras, J.A.; Diez-Echave, P.; Vezza, T.; Hidalgo-García, L.; Lozano-Sánchez, J.; Arráez-Román, D.; Cenis, J.L.; Lozano-Pérez, A.A.; et al. Comparative Study of the Antioxidant and Anti-Inflammatory Effects of Leaf Extracts from Four Different Morus Alba Genotypes in High Fat Diet-Induced Obesity in Mice. Antioxidants 2020, 9, 733. [Google Scholar] [CrossRef] [PubMed]
- Hille, R.; Massey, V. Studies on the Oxidative Half-Reaction of Xanthine Oxidase. J. Biol. Chem. 1981, 256, 9090–9095. [Google Scholar] [CrossRef]
Methodology | CAS Extract | CAP Extract |
---|---|---|
TPC (mg GAE/g DE) | 30.4 ± 0.7 | 28.771 ± 0.008 |
FRAP (mmol Fe2+/g DE) | 0.292 ± 0.005 | 0.27 ± 0.01 |
TEAC (μmol TE/g DE) | 171 ± 2 | 130.0 ± 0.4 |
ORAC (mmol TE/g DE) | 0.368 ± 0.005 | 0.324 ± 0.009 |
·O2− (mg/L) 1 | N. A. | N. A. |
HOCL (mg/L) 1 | 11 ± 2 | 28 ± 4 |
·NO (mg/L) 1 | 1.5 ± 0.2 | 11.8 ± 0.3 |
Collagenase (mg/L) 1 | 660 ± 20 | 690 ± 30 |
Hyaluronidase (mg/L) 1 | 170 ± 10 | 460 ± 20 |
Elastase (mg/L) 3 | 800 ± 60 | 410 ± 30 |
Tyrosinase (mg/L) 1 | 157.1 * | 120 ± 10 |
AChE (mg/L) 2 | 26 ± 4 | 12 ± 1 |
XOD (mg/L) 1 | 7.2 ± 0.7 | 4.4 ± 0.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Villegas, A.; Fernández-Ochoa, Á.; Rojas-García, A.; Cádiz-Gurrea, M.d.l.L.; Villegas-Aguilar, M.d.C.; Fernández-Moreno, P.; Arráez-Román, D.; Segura-Carretero, A. Bioactive Ingredients of Custard Apple (Annona cherimola Mill.) by-Products as an Industrial Interest for the Development of Products with High Added Value. Biol. Life Sci. Forum 2022, 18, 10. https://doi.org/10.3390/Foods2022-13002
García-Villegas A, Fernández-Ochoa Á, Rojas-García A, Cádiz-Gurrea MdlL, Villegas-Aguilar MdC, Fernández-Moreno P, Arráez-Román D, Segura-Carretero A. Bioactive Ingredients of Custard Apple (Annona cherimola Mill.) by-Products as an Industrial Interest for the Development of Products with High Added Value. Biology and Life Sciences Forum. 2022; 18(1):10. https://doi.org/10.3390/Foods2022-13002
Chicago/Turabian StyleGarcía-Villegas, Abigail, Álvaro Fernández-Ochoa, Alejandro Rojas-García, María de la Luz Cádiz-Gurrea, María del Carmen Villegas-Aguilar, Patricia Fernández-Moreno, David Arráez-Román, and Antonio Segura-Carretero. 2022. "Bioactive Ingredients of Custard Apple (Annona cherimola Mill.) by-Products as an Industrial Interest for the Development of Products with High Added Value" Biology and Life Sciences Forum 18, no. 1: 10. https://doi.org/10.3390/Foods2022-13002
APA StyleGarcía-Villegas, A., Fernández-Ochoa, Á., Rojas-García, A., Cádiz-Gurrea, M. d. l. L., Villegas-Aguilar, M. d. C., Fernández-Moreno, P., Arráez-Román, D., & Segura-Carretero, A. (2022). Bioactive Ingredients of Custard Apple (Annona cherimola Mill.) by-Products as an Industrial Interest for the Development of Products with High Added Value. Biology and Life Sciences Forum, 18(1), 10. https://doi.org/10.3390/Foods2022-13002