Chemical Characterization of Different Colored Tomatoes: Application of Biochemical and Spectroscopic Tools †
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Morphological and Biochemical Parameters
3.2. Raman Signature of Tomato Pericarp and PCA
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Grierson, D.; Kader, A.A. Fruit ripening and quality, physiology and biochemistry of ripening. In The Tomato Crop, a Scientific Basis for Improvement; Atherton, J.G., Rudich, J., Eds.; Chapman and Hall: London, UK, 1986; pp. 241–259. [Google Scholar]
- Adalid, A.M.; Roselló, S.; Nuez, F. Evaluation and selection of tomato accessions (Solanum section Lycopersicon) for content of lycopene, β-carotene and ascorbic acid. J. Food Compost. Anal. 2010, 23, 613–618. [Google Scholar] [CrossRef]
- Ibitoyea, D.O.; Kolawole, A.O.; Feyisolac, R.T. Assessment of wild tomato accessions for fruit yield, physicochemical and nutritional properties under a rain forest agroecology. Genet. Resour. 2020, 1, 1–11. [Google Scholar] [CrossRef]
- Peixoto, J.V.M.; Garcia, L.G.C.; Nascimento, A.D.R.; Moraes, E.R.D.; Ferreira, T.A.P.D.C.; Fernandes, M.R.; Pereira, V.D.A. Post-harvest evaluation of tomato genotypes with dual purpose. Food Sci. Technol. 2018, 38, 255–262. [Google Scholar] [CrossRef]
- Akpolat, H.; Barineau, M.; Jackson, K.A.; Akpolat, M.Z.; Francis, D.M.; Chen, Y.-J.; Rodriguez-Saona, L.E. High-Throughput Phenotyping Approach for Screening Major Carotenoids of Tomato by Handheld Raman Spectroscopy Using Chemometric Methods. Sensors 2020, 20, 3723. [Google Scholar] [CrossRef] [PubMed]
- Payne, W.Z.; Kurouski, D. Raman spectroscopy enables phenotyping and assessment of nutrition values of plants: A review. Plant Methods 2021, 17, 78. [Google Scholar] [CrossRef]
- Stevens, R.; Buret, M.; Garchery, C.; Carretero, Y.; Causse, M. Technique for Rapid, Small-Scale Analysis of Vitamin C Levels in Fruit and Application to a Tomato Mutant Collection. J. Agric. Food Chem. 2006, 54, 6159–6165. [Google Scholar] [CrossRef] [PubMed]
- Kuti, J.O.; Konuru, B.H. Effects of genotype and cultivation environment on lycopene content in red-ripe tomatoes. J. Sci. Food Agric. 2005, 85, 2021–2026. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Hammer, Ø.; Harper, D.A.; Ryan, P.D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 2001, 4, 9. [Google Scholar]
- Menges, F. Spectragryph Optical Spectroscopy Software, Version 1.2.14. Available online: http://www.effemm2.de/spectragryph/ (accessed on 27 December 2021).
- Lázaro, A. Tomato landraces: An analysis of diversity and preferences. Plant Genetic Resources: Characterization and Utilization. Plant Genet Resour. 2018, 16, 315–324. [Google Scholar] [CrossRef]
- Helyes, L.; Pék, Z.; Lugasi, A. Function of the variety technological traits and growing conditions on fruit components of tomato (Lycopersicon Lycopersicum L. Karsten). Acta Aliment. 2008, 37, 427–436. [Google Scholar] [CrossRef]
- Pestorić, V.M.; Mastilović, S.J.; Kevrešan, Ž.S.; Pezo, L.L.; Belović, M.M.; Glogovac, S.K.; Škrobot, D.J.; Ilić, N.I.; Takač, A.T. Artificial neural network model in predicting the quality of fresh tomato genotype. Food Feed Res. 2021, 48, 9–21. [Google Scholar] [CrossRef]
- Aykas, D.P.; Rodrigues Borba, K.; Rodriguez-Saona, L.E. Non-Destructive Quality Assessment of Tomato Paste by Using Portable Mid-Infrared Spectroscopy and Multivariate Analysis. Foods 2020, 9, 1300. [Google Scholar] [CrossRef]
- Vela-Hinojosa, C.; Escalona-Buendía, H.B.; Mendoza-Espinoza, J.A.; Villa-Hernández, J.M.; Lobato-Ortiz, R.; Rodríguez-Pérez, J.E.; Pérez-Flores, L.J. Antioxidant Balance and Regulation in Tomato Genotypes of Different Color. J. Am. Soc. Hortic Sci. 2018, 144, 45–54. [Google Scholar] [CrossRef]
- Chang, C.-H.; Liu, Y.-C. Study on Lycopene and Antioxidant Contents Variations in Tomatoes under Air-Drying Process. J. Food Sci. 2007, 72, 532–540. [Google Scholar] [CrossRef] [PubMed]
- Georgé, S.; Tourniaire, F.; Gautier, H.; Goupy, P.; Rock, E.; Caris-Veyrat, C. Changes in the contents of carotenoids, phenolic compounds and vitamin C during technical processing and lyophilisation of red and yellow tomatoes. Food Chem. 2011, 124, 1603–1611. [Google Scholar] [CrossRef]
- Walia, S.; Singh, M.; Kaur, C.; Kumar, R.; Joshi, S. Antioxidant Composition of Red and Orange Cultivars of Tomatoes (Solanum lycopersicon L.): A Comparative Evaluation. J. Plant Biochem. Biotechnol. 2009, 19, 95–97. [Google Scholar] [CrossRef]
- Flores, P.; Sánchez, E.; Fenoll, J.; Hellín, P. Genotypic variability of carotenoids in traditional tomato cultivars. Food Res. Int. 2017, 100, 510–516. [Google Scholar] [CrossRef] [PubMed]
- Schulz, H.; Baranska, M.; Baranski, R. Potential of NIR-FT-Raman spectroscopy in natural carotenoid analysis. Biopolym. Orig. Res. Biomol. 2005, 77, 212–221. [Google Scholar] [CrossRef]
- Schulz, H.; Schütze, W.; Baranska, M. Fast determination of carotenoids in tomatoes and tomato products by Raman spec-troscopy. In Proceedings of the IV International Conference on Managing Quality in Chains-The Integrated View on Fruits and Vegetables Quality, Bangkok, Thailand, 7–10 August 2006; Volume 712, pp. 901–906. [Google Scholar]
- de Oliveira, V.E.; Castro, H.V.; Edwards, H.G.; de Oliveira, L.F.C. Carotenes and carotenoids in natural biological samples: A Raman spectroscopic analysis. J. Raman Spectrosc. 2010, 41, 642–650. [Google Scholar] [CrossRef]
- Pećinar, I. Raman Microscopy in Plant Science, Carotenoids Detection in Fruit Material. In Application of Molecular Methods and Raman Microscopy/Spectroscopy in Agricultural Sciences and Food Technology; Vucelić-Radović, B., Lazić, D., Nikšić, M., Eds.; Ubiquity Press: London, UK, 2019; pp. 177–186. [Google Scholar] [CrossRef]
- Prats Mateu, B.; Hauser, M.T.; Heredia, A.; Gierlinger, N. Waterproofing in Arabidopsis: Following phenolics and lipids in situ by confocal Raman microscopy. Front Chem. 2016, 4, 10. [Google Scholar] [CrossRef] [PubMed]
- Trebolazabala, J.; Maguregui, M.; Morillas, H.; de Diego, A.; Madariaga, J.M. Portable Raman spectroscopy for an in-situ monitoring the ripening of tomato (Solanum lycopersicum) fruits. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2017, 180, 138–143. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Uttam, R.; Bharti, A.S.; Shukla, N.; Uttam, K.N. Label-free mapping of the biochemicals in tomato fruit by confocal Raman microspectroscopy. Natl. Acad. Sci. Lett. 2019, 42, 365–368. [Google Scholar] [CrossRef]
Morphological Parameters | Pink Tomato “Pirotski Rozni” | Yellow Tomato | Dark Tomato |
---|---|---|---|
fresh weight (g/fruit) | 365.89 ± 21.70 a | 93.89 ± 2.4 b | 74.11 ± 2.91 b |
fruit width (cm) | 63.93 ± 2.45 a | 57.07 ± 1.33 ab | 50.48 ± 2.16 b |
fruit height (cm) | 66.30 ± 2.95 a | 51.15 ± 1.19 b | 43.92 ± 1.05 c |
Fruit-shape index | 1.04 ± 0.04 a | 0.90 ± 0.03 b | 0.88 ± 0.04 b |
Biochemical Parameters | Pink Tomato “Pirotski Rozni” | Yellow Tomato | Dark Tomato |
---|---|---|---|
pH | 3.9 ± 0.01 c | 4.1 ± 0.03 a | 4.0 ± 0.03 b |
TSS (% Brix) | 6.2 ± 0.00 b | 8.6 ± 0.51 a | 6.4 ± 0.07 b |
TTA (% of Citric acid) | 0.58 ± 6.78 × 10−3 a | 0.54 ± 9.69 × 10−3 b | 0.46 ± 0.01 c |
TSS/TTA | 10.57 ± 0.11 b | 14.95 ± 0.10 a | 13.90 ± 0.39 a |
Antioxidative activity (µmol TU-Trolox units/g) | 1504.06 ± 76.35 c | 2448.24 ± 174.80 a | 1976.69 ± 115.74 b |
Vitamin C (mg/100 g) | 17.83 ± 0.74 b | 31.37 ± 0.97 a | 33.37 ± 0.10 a |
Lycopene (mg/kg) | 247.13 ± 13.00 a | 30.81 ± 2.18 c | 128.75 ± 17.11 b |
β–carotene (mg/100 g) | 2.59 ± 0.22 b | 1.63 ± 0.05 b | 6.41 ± 0.53 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petrović, I.; Marjanović, M.; Pećinar, I.; Savić, S.; Jovanović, Z.; Stikić, R. Chemical Characterization of Different Colored Tomatoes: Application of Biochemical and Spectroscopic Tools. Biol. Life Sci. Forum 2022, 16, 32. https://doi.org/10.3390/IECHo2022-12482
Petrović I, Marjanović M, Pećinar I, Savić S, Jovanović Z, Stikić R. Chemical Characterization of Different Colored Tomatoes: Application of Biochemical and Spectroscopic Tools. Biology and Life Sciences Forum. 2022; 16(1):32. https://doi.org/10.3390/IECHo2022-12482
Chicago/Turabian StylePetrović, Ivana, Milena Marjanović, Ilinka Pećinar, Slađana Savić, Zorica Jovanović, and Radmila Stikić. 2022. "Chemical Characterization of Different Colored Tomatoes: Application of Biochemical and Spectroscopic Tools" Biology and Life Sciences Forum 16, no. 1: 32. https://doi.org/10.3390/IECHo2022-12482
APA StylePetrović, I., Marjanović, M., Pećinar, I., Savić, S., Jovanović, Z., & Stikić, R. (2022). Chemical Characterization of Different Colored Tomatoes: Application of Biochemical and Spectroscopic Tools. Biology and Life Sciences Forum, 16(1), 32. https://doi.org/10.3390/IECHo2022-12482