Fruit and Vegetable Intake, and Metabolic Syndrome Components: A Population-Based Study †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. MetS Risk Factors
2.3. FV Consumption
2.4. Covariates
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Global Health Risks: Mortality and Burden of Disease Attributable to Selected Major Risks. 2009. Available online: https://apps.who.int/iris/handle/10665/44203 (accessed on 2 February 2022).
- Saely, C.H.; Rein, P.; Drexel, H. The metabolic syndrome and risk of cardiovascular disease and diabetes: Experiences with the new diagnostic criteria from the International Diabetes Federation. Horm. Metab. Res. 2007, 39, 642–650. [Google Scholar] [CrossRef] [PubMed]
- Nestel, P.; Lyu, R.; Low, L.P.; Sheu, W.H.-H.; Nitiyanant, W.; Saito, I.; Tan, C.E. Metabolic syndrome: Recent prevalence in East and Southeast Asian populations. Asia Pac. J. Clin. Nutr. 2007, 16, 362–367. [Google Scholar] [PubMed]
- Ford, E.S.; Giles, W.H.; Dietz, W.H. Prevalence of the metabolic syndrome among US adults: Findings from the Third National Health and Nutrition Examination Survey. JAMA 2002, 287, 356–359. [Google Scholar] [CrossRef] [PubMed]
- Aguilar, M.; Bhuket, T.; Torres, S.; Liu, B.; Wong, R.J. Prevalence of the Metabolic Syndrome in the United States, 2003–2012. JAMA 2015, 313, 1973–1974. [Google Scholar] [CrossRef] [PubMed]
- Ben-Yacov, L.; Ainembabazi, P.; Stark, A.H.; Kizito, S.; Bahendeka, S. Prevalence and sex-specific patterns of metabolic syndrome in rural Uganda. BMJ Nutr. Prev. Health 2020, 3, 11–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uganda Ministry of Health. Non-Communicable Disease Risk Factor Baseline Survey. 2014. Available online: https://www.health.go.ug/cause/non-communicable-disease-risk-factor-baseline-survey/ (accessed on 2 March 2022).
- Lim, M.; Kim, J. Association between fruit and vegetable consumption and risk of metabolic syndrome determined using the Korean Genome and Epidemiology Study (KoGES). Eur. J. Nutr. 2019, 59, 1667–1678. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, D.Z. Associations of vegetable and fruit consumption with metabolic syndrome. A meta-analysis of observational studies. Public Health Nutr. 2018, 21, 1693–1703. [Google Scholar] [CrossRef] [PubMed]
- Schwingshackl, L.; Hoffmann, G.; Kalle-Uhlmann, T.; Arregui, M.; Buijsse, B.; Boeing, H. Fruit and Vegetable Consumption and Changes in Anthropometric Variables in Adult Populations: A Systematic Review and Meta-Analysis of Prospective Cohort Studies. PLoS ONE 2015, 10, e0140846. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.M.; Declercq, V.; Cui, Y.; Forbes, C.; Grandy, S.; Keats, M.; Parker, L.; Sweeney, E.; Dummer, T.J.B. Fruit and vegetable intake and body adiposity among populations in Eastern Canada: The Atlantic Partnership for Tomorrow’s Health Study. BMJ Open 2018, 8, 18060. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kabwama, S.N.; Bahendeka, S.K.; Wesonga, R.; Mutungi, G.; Guwatudde, D. Low consumption of fruits and vegetables among adults in Uganda: Findings from a countrywide cross-sectional survey. Arch. Public Health 2019, 77, 4. [Google Scholar] [CrossRef] [PubMed]
- Riley, L.; Guthold, R.; Cowan, M.; Savin, S.; Bhatti, L.; Armstrong, T.; Bonita, R. The World Health Organization STEPwise Approach to Noncommunicable Disease Risk-Factor Surveillance: Methods, Challenges, and Opportunities. Am. J. Public Health 2016, 106, 74–78. [Google Scholar] [CrossRef] [PubMed]
- Global Physical Activity Questionnaire (GPAQ). Available online: https://www.who.int/ncds/surveillance/steps/GPAQ%20Instrument%20and%20Analysis%20Guide%20v2.pdf (accessed on 2 February 2022).
Characteristic | Men (1396) | Women (1736) | ||||||
---|---|---|---|---|---|---|---|---|
% | Total FV | Fruits † | Vegetables †† | % | Total FV | Fruits † | Vegetables †† | |
Age, years | ||||||||
18–29 | 45.6 | 2.5 ± 0.1 | 1.5 ± 0.1 | 1.0 ± 0.1 a | 48.1 | 2.7 ± 0.1 | 1.5 ± 0.1 | 1.2 ± 0.1 a |
30–49 | 39.6 | 2.5 ± 0.2 | 1.3 ± 0.1 | 1.2 ± 0.1 | 38.3 | 2.8 ± 0.1 | 1.3 ± 0.1 | 1.5 ± 0.1 * |
50–69 | 14.8 | 2.7 ± 0.2 | 1.1 ± 0.2 | 1.6 ± 0.2 * | 13.5 | 3.2 ± 0.4 | 1.5 ± 0.3 | 1.7 ± 0.2 * |
Highest education level attained | ||||||||
No formal education | 6.9 | 2.3 ± 0.3 | 0.9 ± 0.2 | 1.4 ± 0.2 | 22.0 | 2.5 ± 0.2 | 1.2 ± 0.2 | 1.2 ± 0.1 |
Primary | 41.8 | 2.4 ± 0.2 | 1.4 ± 0.1 | 1.1 ± 0.1 | 40.3 | 3.0 ± 0.2 | 1.5 ± 0.2 | 1.5 ± 0.1 |
Secondary | 39.4 | 2.5 ± 0.2 | 1.3 ± 0.1 | 1.2 ± 0.1 | 32.0 | 2.9 ± 0.2 | 1.4 ± 0.2 | 1.4 ± 0.1 |
University and above | 12.0 | 2.7 ± 0.3 | 1.5 ± 0.2 | 1.3 ± 0.2 | 5.7 | 2.4 ± 0.3 | 1.2 ± 0.2 | 1.3 ± 0.2 |
Employment in the past year | ||||||||
Unemployed | 29.7 | 2.5 ± 0.1 | 1.2 ± 0.1 | 1.1 ± 0.1 | 46.9 | 3.0 ± 0.2 a | 1.5 ± 0.2 a | 1.4 ± 0.1 |
Employed | 70.3 | 2.5 ± 0.1 | 1.4 ± 0.1 | 1.2 ± 0.1 | 53.1 | 2.6 ± 0.1 b | 1.3 ± 0.1 * | 1.4 ± 0.1 |
Ethnicity | ||||||||
Baganda | 15.7 | 2.0 ± 0.2 a | 1.2 ± 0.1 a | 0.8 ± 0.1 a | 13.5 | 2.7 ± 0.4 | 1.4 ± 0.2 | 1.3 ± 0.2 a |
Banyankole/Bakiga | 23.0 | 1.7 ± 0.1 | 0.7 ± 0.1 * | 1.1 ± 0.1 | 23.8 | 2.0 ± 0.1 | 0.9 ± 0.1 | 1.1 ± 0.1 |
Basoga | 10.7 | 3.0 ± 0.3 * | 1.7 ± 0.2 | 1.3 ± 0.1 * | 11.3 | 3.5 ± 0.3 | 1.9 ± 0.3 | 1.7 ± 0.1 |
Banyoro/Batooro | 10.7 | 2.2 ± 0.2 | 0.9 ± 0.1 | 1.2 ± 0.2 | 11.9 | 2.1 ± 0.2 | 1.0 ± 0.1 | 1.1 ± 0.1 |
Lango/Padhora/Alur | 15.0 | 2.1 ± 0.2 | 0.9 ± 0.1 | 1.4 ± 0.2 * | 17.7 | 2.4 ± 0.2 | 0.9 ± 0.1 | 1.6 ± 0.2 |
Lugbara/Madi/Iteso/Karimajong | 18.2 | 3.8 ± 0.5 * | 2.7 ± 0.5 * | 1.2 ± 0.1 * | 14.7 | 4.1 ± 0.5 | 2.8 ± 0.5 | 1.4 ± 0.1 |
Bagisu/Sabiny/others | 6.8 | 3.3 ± 0.3 | 1.3 ± 0.2 | 2.0 ± 0.2 * | 7.1 | 3.7 ± 0.5 | 1.6 ± 0.3 | 2.2 ± 0.3 * |
Marital status | ||||||||
Single/divorced/separated | 34.2 | 2.6 ± 0.2 | 1.5 ± 0.2 | 1.1 ± 0.1 | 34.1 | 2.9 ± 0.2 | 1.5 ± 0.2 | 1.3 ± 0.1 |
Married/cohabiting | 65.8 | 2.5 ± 0.1 | 1.2 ± 0.1 | 1.2 ± 0.1 | 65.9 | 2.8 ± 0.1 | 1.3 ± 0.1 | 1.4 ± 0.1 |
Tobacco use | ||||||||
Never/past user | 83.0 | 2.5 ± 0.1 | 1.3 ± 0.1 | 1.2 ± 0.1 | 95.1 | 2.8 ± 0.1 | 1.5 ± 0.1 | 1.4 ± 0.1 |
Current user | 17.0 | 2.5 ± 0.2 | 1.3 ± 0.2 | 1.3 ± 0.1 | 4.9 | 1.7 ± 0.2 | 0.5 ± 0.2 | 1.4 ± 0.2 |
Alcohol use | ||||||||
Never user | 41.9 | 2.7 ± 0.2 | 1.3 ± 0.1 | 1.4 ± 0.1 a | 63.6 | 2.8 ± 0.1 | 1.5 ± 0.1 | 1.3 ± 0.1 a |
Current user | 38.2 | 2.3 ± 0.1 | 1.3 ± 0.1 | 1.1 ± 0.1 | 17.7 | 2.6 ± 0.2 | 1.2 ± 0.2 | 1.5 ± 0.1 |
Past user | 19.8 | 2.4 ± 0.2 | 1.5 ± 0.2 | 1.0 ± 0.1 * | 18.7 | 2.8 ± 0.3 | 1.2 ± 0.2 | 1.7 ± 0.2 * |
Moderate physical activity | ||||||||
No | 5.2 | 1.7 ± 0.3 a | 1.0 ± 0.2 | 0.8 ± 0.1 a | 7.0 | 2.6 ± 0.3 | 1.3 ± 0.2 | 1.3 ± 0.1 |
Yes | 94.8 | 2.5 ± 0.1 * | 1.4 ± 0.1 | 1.2 ± 0.1 * | 93.0 | 2.8 ± 0.1 | 1.4 ± 0.1 | 1.4 ± 0.1 |
BMI category | ||||||||
Underweight | 10.9 | 2.6 ± 0.3 | 1.5 ± 0.1 | 1.3 ± 0.2 | 7.4 | 2.3 ± 0.3 | 1.0 ± 0.1 | 1.5 ± 0.2 |
Normal weight | 76.9 | 2.5 ± 0.1 | 1.2 ± 0.2 | 1.2 ± 0.1 | 66.6 | 2.8 ± 0.1 | 1.5 ± 0.2 | 1.4 ± 0.1 |
Overweight/obese | 12.2 | 2.5 ± 0.3 | 1.2 ± 0.2 | 1.4 ± 0.2 | 26.0 | 2.6 ± 0.2 | 1.0 ± 0.2 | 1.4 ± 0.1 |
Number of MetS Risk Factors | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Men | Women | |||||||||
0 n = 415 | 1 n = 775 | 2 n = 200 | ≥3 n = 06 | p-Value | 0 n = 390 | 1 n = 925 | 2 n = 335 | ≥3 n = 86 | p-Value | |
Total FV | 1.9 ± 0.3 | 2.2 ± 0.2 | 2.5 ± 0.2 | 1.3 ± 0.3 | 0.12 | 2.2 ± 0.3 a | 2.4 ± 0.2 a | 2.6 ± 0.2 a | 1.4 ± 0.3 b | 0.003 |
Vegetables | 1.3 ± 0.1 ab | 1.5 ± 0.1 a | 1.4 ± 0.1 a | 0.9 ± 0.1 b | <0.001 | 1.4 ± 0.1 ab | 1.6 ± 0.1 ab | 1.7 ± 0.1 a | 1.1 ± 0.1 b | 0.005 |
Fruits | 1.1 ± 0.2 | 1.1 ± 0.2 | 1.5 ± 0.2 | 0.7 ± 0.2 | 0.49 | 1.5 ± 0.2 | 1.5 ± 0.2 | 1.5 ± 0.2 | 0.9 ± 0.2 | 0.070 |
Total FV | Fruits | Vegetables | |||||||
---|---|---|---|---|---|---|---|---|---|
Yes | No | OR (95% CI) † | Yes | No | OR (95% CI) | Yes | No | OR (95% CI) | |
Abdominal obesity | 06 | 1357 | 06 | 1258 | 06 | 1258 | |||
Per IQR of servings/day 1 | 0.61 (0.21–1.75) | 0.80 (0.43–1.47) | 0.48 (0.12–1.90) | ||||||
High blood pressure | 349 | 1018 | 343 | 1008 | 348 | 1016 | |||
Q1 | 102 | 288 | 1.00 | 89 | 249 | 1.00 | 106 | 293 | 1.00 |
Q2 | 76 | 248 | 0.96 (0.58–1.60) | 80 | 273 | 1.00 (0.62–1.62) | 88 | 331 | 0.63 (0.40–1.00) |
Q3 | 79 | 265 | 0.68 (0.42–1.10) | 84 | 240 | 1.01 (0.59–1.74) | 66 | 197 | 1.16 (0.72–1.86) |
Q4 | 92 | 217 | 1.20 (0.73–1.97) | 90 | 246 | 1.14 (0.68–1.92) | 88 | 195 | 1.17 (0.73–1.86) |
p for trend | 0.482 | 0.560 | 0.133 | ||||||
High blood glucose | 55 | 1232 | 55 | 1216 | 55 | 1230 | |||
Q1 | 19 | 357 | 1.00 | 13 | 307 | 1.00 | 16 | 364 | 1.00 |
Q2 | 09 | 287 | 0.47 (0.20–1.11) | 16 | 312 | 1.17 (0.40–3.41) | 13 | 384 | 0.56 (0.22–1.41) |
Q3 | 17 | 315 | 1.02 (0.41–2.52) | 16 | 295 | 1.16 (0.43–3.15) | 17 | 229 | 1.17 (0.44–3.10) |
Q4 | 10 | 273 | 0.56 (0.23–1.38) | 10 | 302 | 0.66 (0.23–1.94) | 09 | 253 | 0.81 (0.28–2.34) |
p for trend | 0.357 | 0.286 | 0.974 | ||||||
Low high-density lipoprotein cholesterol (HDL-c) | 782 | 505 | 775 | 496 | 780 | 505 | |||
Q1 | 220 | 156 | 1.00 | 183 | 137 | 1.00 | 72 | 46 | 1.00 |
Q2 | 170 | 126 | 1.12 (0.74–1.69) | 192 | 136 | 0.87 (0.57–1.32) | 127 | 64 | 1.02 (0.69–1.52) |
Q3 | 212 | 120 | 1.50 (0.96–2.36) | 198 | 113 | 1.23 (0.80–1.90) | 88 | 45 | 1.27 (0.81–2.00) |
Q4 | 180 | 103 | 1.73 (1.04–2.87) | 202 | 110 | 1.43 (0.92–2.23) | 85 | 66 | 1.06 (0.66–1.69) |
p for trend | 0.025 | 0.037 | 0.680 |
Total FV | Fruits | Vegetables | |||||||
---|---|---|---|---|---|---|---|---|---|
Yes | No | OR (95% CI) † | Yes | No | OR (95% CI) | Yes | No | OR (95% CI) | |
Abdominal obesity | 301 | 1395 | 299 | 1383 | 300 | 1392 | |||
Q1 | 86 | 330 | 1.00 | 76 | 381 | 1.00 | 62 | 283 | 1.00 |
Q2 | 69 | 342 | 0.94 (0.61–1.45) | 91 | 349 | 1.26 (0.76–2.09) | 100 | 422 | 1.16 (0.74–1.81) |
Q3 | 83 | 350 | 0.84 (0.55–1.30) | 69 | 309 | 0.78 (0.46–1.31) | 65 | 323 | 1.01 (0.61–1.69) |
Q4 | 63 | 373 | 0.63 (0.39–1.02) | 63 | 344 | 0.76 (0.46–1.24) | 73 | 364 | 0.95 (0.58–1.56) |
p for trend | 0.044 | 0.078 | 0.607 | ||||||
High blood pressure | 364 | 1340 | 364 | 1326 | 364 | 1336 | |||
Q1 | 100 | 317 | 1.00 | 122 | 337 | 1.00 | 75 | 272 | 1.00 |
Q2 | 86 | 328 | 0.67 (0.43–1.05) | 100 | 343 | 0.88 (0.58–1.34) | 109 | 416 | 0.98 (0.63–1.54) |
Q3 | 87 | 348 | 0.71 (0.43–1.18) | 64 | 316 | 0.65 (0.41–1.03) | 74 | 315 | 0.72 (0.39–1.31) |
Q4 | 91 | 347 | 0.82 (0.54–1.26) | 78 | 330 | 0.83 (0.51–1.34) | 106 | 333 | 1.01 (0.65–1.56) |
p for trend | 0.728 | 0.550 | 0.962 | ||||||
High blood glucose | 75 | 1551 | 75 | 1535 | 75 | 1548 | |||
Q1 | 17 | 384 | 1.00 | 18 | 418 | 1.00 | 16 | 315 | 1.00 |
Q2 | 29 | 367 | 1.62 (0.69–3.79) | 27 | 404 | 0.98 (0.41–2.35) | 25 | 477 | 1.25 (0.59–2.64) |
Q3 | 15 | 405 | 0.44 (0.16–1.20) | 19 | 343 | 0.91 (0.39–2.14) | 19 | 352 | 0.87 (0.37–2.05) |
Q4 | 14 | 395 | 0.78 (0.32–1.88) | 11 | 370 | 0.45 (0.17–1.21) | 15 | 404 | 0.77 (0.31–1.95) |
p for trend | 0.245 | 0.062 | 0.306 | ||||||
Low HDL-c | 1120 | 506 | 1113 | 497 | 1117 | 506 | |||
Q1 | 279 | 122 | 1.00 | 288 | 148 | 1.00 | 241 | 139 | 1.00 |
Q2 | 268 | 128 | 0.86 (0.57–1.30) | 303 | 128 | 1.12 (0.78–1.61) | 239 | 158 | 1.18 (0.77–1.80) |
Q3 | 290 | 130 | 1.01 (0.66–1.56) | 259 | 103 | 1.25 (0.81–1.93) | 153 | 93 | 0.98 (0.64–1.49) |
Q4 | 283 | 126 | 1.10 (0.73–1.64) | 263 | 118 | 1.09 (0.74–1.59) | 147 | 115 | 1.34 (0.86–2.07) |
p for trend | 0.416 | 0.881 | 0.283 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kityo, A.; Kaggwa, A. Fruit and Vegetable Intake, and Metabolic Syndrome Components: A Population-Based Study. Biol. Life Sci. Forum 2022, 12, 18. https://doi.org/10.3390/IECN2022-12365
Kityo A, Kaggwa A. Fruit and Vegetable Intake, and Metabolic Syndrome Components: A Population-Based Study. Biology and Life Sciences Forum. 2022; 12(1):18. https://doi.org/10.3390/IECN2022-12365
Chicago/Turabian StyleKityo, Anthony, and Abraham Kaggwa. 2022. "Fruit and Vegetable Intake, and Metabolic Syndrome Components: A Population-Based Study" Biology and Life Sciences Forum 12, no. 1: 18. https://doi.org/10.3390/IECN2022-12365
APA StyleKityo, A., & Kaggwa, A. (2022). Fruit and Vegetable Intake, and Metabolic Syndrome Components: A Population-Based Study. Biology and Life Sciences Forum, 12(1), 18. https://doi.org/10.3390/IECN2022-12365