Effects of Alkalinity-Induced Iron Deficiency on Physiological and Growth Variables of Some Upland Rice Cultivars under Laboratory Condition †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Experimental Setup
2.2. Sampling and Data Collection
2.3. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Saito, K.; Asai, H.; Zhao, D.; Laborte, A.G.; Grenier, C. Progress in varietal improvement for increasing upland rice productivity in the tropics. Plant Prod. Sci. 2018, 21, 145–158. [Google Scholar] [CrossRef] [Green Version]
- Van Ittersum, M.K.; van Bussel, L.G.J.; Wolf, J.; Grassini, P.; van Wart, J.; Guilpart, N.; Claessens, L.; de Groot, H.; Wiebe, K.; Mason-D’Croz, D.; et al. Can sub-Saharan Africa feed itself? Proc. Natl. Acad. Sci. USA 2016, 113, 14964–14969. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mengel, K. Iron availability in plan tissues-iron chlorosis on calcareous soils. In Iron Nutrition in Soils and Plant; Abadia, J., Ed.; Kluwer Academic Publishers: Amsterdam, The Netherlands, 1995; pp. 389–397. [Google Scholar]
- Ramírez, L.; Bartoli, C.G.; LaMattina, L. Glutathione and ascorbic acid protect Arabidopsis plants against detrimental effects of iron deficiency. J. Exp. Bot. 2013, 64, 3169–3178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, P.; Tewari, R.K.; Sharma, P.N. Sodium nitroprusside-mediated alleviation of iron deficiency and modulation of antioxidant responses in maize plants. AoB Plants 2010, 2010, plq002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roosta, H.R. Interaction between water alkalinity and nutrient solution ph on the vegetative growth, chlorophyll fluorescence and leaf magnesium, iron, manganese, and zinc concentrations in lettuce. J. Plant Nutr. 2011, 34, 717–731. [Google Scholar] [CrossRef]
- Bavaresco, L.; Fregoni, M.; Perino, A. Physiological aspects of lime-induced chlorosis in some Vitis species. I. Pot trial on calcareous soil. Vitis 1994, 33, 123–126. [Google Scholar]
- Pestana, M.; de Varennes, A.; Abadia, J.; Faria, E.A. Differential tolerance to iron deficiency of citrus rootstocks grown in nutrient solution. Sci. Hortic. 2005, 104, 25–36. [Google Scholar] [CrossRef] [Green Version]
- Yoshida, S.; Forno, D.; Cook, J.; Gomez, K. Laboratory Manual for Physiological Studies of Rice; International Rice Research Institute: Los Baños, Philippines, 1976. [Google Scholar]
- Mamidi, S.; Chikara, S.; Goos, R.J.; Hyten, D.L.; Annam, D.; Moghaddam, S.M.; Lee, R.K.; Cregan, P.B.; McClean, P.E. Genome-Wide Association Analysis Identifies Candidate Genes Associated with Iron Deficiency Chlorosis in Soybean. Plant Genome 2011, 4, 154–164. [Google Scholar] [CrossRef] [Green Version]
- AOAC. Official Methods of Analysis. Mineral Analysis Flame Absorption Spectroscopy, 17th ed.; Association of Analytical Community: Rockville, MD, USA, 2006. [Google Scholar]
- Akhtar, S.; Shahzad, A.; Arshad, M.; Hassan, F. Morpho-physiological evaluation of groundnut (Arachhypogaea L.) genotypes for iron deficiency tolerance. Pak. J. Bot. 2013, 45, 893–899. [Google Scholar]
- Zeng, L.; Shannon, M.C.; Grieve, C.M. Evaluation of salt tolerance in rice genotypes by multiple agronomic parameters. Euphytica 2002, 127, 235–245. [Google Scholar] [CrossRef]
- Alcántara, E.; Romera, F.; Cañete, M.; De La Guardia, M. Effects of bicarbonate and iron supply on Fe(III) reducing capacity of roots and leaf chlorosis of the susceptible peach rootstock “Nemaguard”. J. Plant Nutr. 2000, 23, 1607–1617. [Google Scholar] [CrossRef]
- Zribi, K.; Gharsalli, M. Effect of bicarbonate on growth and iron nutrition of pea. J. Plant Nutr. 2002, 25, 2143–2149. [Google Scholar] [CrossRef]
- Coulombe, B.A.; Chaney, R.L.; Wiebold, W.J. Use of bicarbonate in screening soybeans for resistance to iron chlorosis. J. Plant Nutr. 1984, 7, 411–425. [Google Scholar] [CrossRef]
- Sakariyawo, O.S.; Oyedeji, O.E.; Soretire, A. Effect of iron deficiency on the growth, development and grain yield of some selected upland rice genotypes in the rainforest. J. Plant Nutr. 2020, 43, 851–863. [Google Scholar] [CrossRef]
- Kim, S.A.; Guerinot, M.L. Mining iron: Iron uptake and transport in plants. FEBS Lett. 2007, 581, 2273–2280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Terry, N.; Abadia, J. Function of iron in chloroplasts. J. Plant Nutr. 1986, 9, 609–646. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Wu, F.-H.; Shang, Y.-T.; Wang, W.-H.; Hu, W.-J.; Simon, M.; Liu, X.; Shangguan, Z.-P.; Zheng, H.-L. Hydrogen sulphide improves adaptation of Zea maysseedlings to iron deficiency. J. Exp. Bot. 2015, 66, 6605–6622. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, L.; Wang, G.; Chen, P.; Zhu, H.; Wang, S.; Ding, Y. Shoot-Root Communication Plays a Key Role in Physiological Alterations of Rice (Oryza sativa) Under Iron Deficiency. Front. Plant Sci. 2018, 9, 757. [Google Scholar] [CrossRef] [PubMed]
Cluster | Membership | Size | Min | Max | Mean | StdDev |
---|---|---|---|---|---|---|
1 | Caipo, OFADA3, LAC23 | 3 | 91.2 | 109 | 97.5 | 9.98 |
2 | FARO65 | 1 | 85.1 | 85.11 | 85.11 | |
3 | PCT11-1-3-1, NERICA3, DURADO, NERICA15, NERICA16, CIRAD409, IGBEMORED, Azucena, IAC120, CIRAD403, Palapo, NERICA4, IRAT13, EbonyiLocalBest, Wayrem, OS4, NERICA18 | 17 | 61.4 | 80.36 | 67.33 | 5.53 |
4 | NERICA13, NERICA11, NERICA17, ARICA5, NERICA14, CIRAD358, IRAT170, NERICA8, NERICA5, CT13582-15-M, IRAT226, IRAT2 | 12 | 49.7 | 59.17 | 54.76 | 3.13 |
5 | CIRAD394, WAB56-50, ITA301, FARO63, IRAT216, NERICA12, Vandana, IRAT212, IRAT257, ARICA4, IAC47, ChinaBest, IRAT364, OS6 | 14 | 37.9 | 53.42 | 47.4 | 5.33 |
6 | WAB181-18, WABC165, ITA128, IR7267-12-2-3, WAB56-104, MOROBEREKAN, NERICA6, Pamira, NERICA9, IRAT133, WAB99-16, APO, NERICA10, IRAT144, CIRAD488, NERICA1, OFADA4, Palawan, IGUAPECATETO, IRAT112, IRAT109, ART-27-58-7-1-2, OFADA1, IRAT362, ART27-190-1-3-3, FARO64, Curinga, SabonDaga, NERICA2, Primavera, OFADA2, WAB638-1, NERICA7 | 33 | 34.3 | 51.99 | 43.89 | 4.77 |
[A] | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Genotype | SPAD Reading | Leaf Fe Concentration (mg/kg) | Photosynthetic Rate (μmol(CO2) m−2s−1) | Quantum Yield (Fv/Fm) | ||||||||
0 mM | 15 mM | 25 mM | 0 mM | 15 mM | 25 mM | 0 mM | 15 mM | 25 mM | 0 mM | 150 Mm | 25 mM | |
Most tolerant | ||||||||||||
Caipo | 40.54 | 29.61 | 27.38 | 86.64 | 61.32 | 49.57 | 27.44 | 20.33 | 8.28 | 0.787 | 0.736 | 0.731 |
OFADA3 | 33.03 | 24.84 | 21.95 | 85.34 | 62.51 | 50.76 | 28.66 | 21.54 | 9.49 | 0.783 | 0.734 | 0.727 |
LAC23 | 35.19 | 25.97 | 23.26 | 89.54 | 62.21 | 49.96 | 27.21 | 20.09 | 8.05 | 0.787 | 0.738 | 0.731 |
FARO65 | 37.42 | 27.88 | 14.09 | 86.24 | 38.61 | 15.05 | 26.77 | 11.37 | 6.49 | 0.786 | 0.698 | 0.599 |
PCT111 | 35.44 | 23.33 | 20.33 | 85.15 | 55.89 | 37.14 | 27.98 | 20.44 | 7.98 | 0.781 | 0.724 | 0.698 |
Least tolerant | ||||||||||||
NERICA2 | 37.91 | 12.06 | 9.79 | 88.54 | 36.72 | 13.08 | 27.50 | 12.08 | 6.45 | 0.787 | 0.702 | 0.601 |
PRIMAVER | 38.44 | 23.01 | 8.77 | 91.94 | 40.92 | 16.48 | 27.87 | 12.45 | 6.80 | 0.785 | 0.697 | 0.594 |
OFADA2 | 32.36 | 12.59 | 9.31 | 86.94 | 35.18 | 11.48 | 27.86 | 12.44 | 6.81 | 0.786 | 0.699 | 0.600 |
WAB638-1 | 31.26 | 17.56 | 7.52 | 89.84 | 38.82 | 14.38 | 26.65 | 11.23 | 5.58 | 0.780 | 0.690 | 0.590 |
NERICA7 | 41.21 | 10.59 | 8.47 | 88.34 | 36.58 | 12.88 | 26.86 | 11.44 | 5.81 | 0.784 | 0.694 | 0.594 |
Mean | 36.28 | 19.37 | 16.47 | 87.85 | 46.87 | 27.08 | 27.483 | 15.343 | 7.177 | 0.785 | 0.712 | 0.646 |
F values (ANOVA) | ||||||||||||
G | 462.81 *** | 1389.8 *** | 451.52 *** | 2880.9 *** | ||||||||
T | 7851.76 *** | 48,719.0 *** | 37,613.52 *** | 57,428.9 *** | ||||||||
G × T | 209.84 *** | 453.6 *** | 183.45 *** | 1351.2 *** | ||||||||
[B] | ||||||||||||
Genotype | ColourVisual Score | Plant Height (cm) | STDRYWEIGHT (g) | RTDRYWEIGHT (g) | ||||||||
0 mM | 15 mM | 25 mM | 0 mM | 15 mM | 25 mM | 0 mM | 15 mM | 25 Mm | 0 mM | 15 mM | 25 mM | |
Most tolerant | ||||||||||||
Caipo | 5.0 | 4.0 | 4.0 | 43.71 | 36.47 | 32.27 | 0.949 | 0.706 | 0.629 | 0.694 | 0.554 | 0.489 |
OFADA3 | 5.0 | 4.0 | 3.0 | 42.21 | 32.84 | 19.44 | 0.713 | 0.423 | 0.397 | 0.402 | 0.311 | 0.219 |
LAC23 | 5.0 | 4.0 | 3.0 | 41.21 | 30.52 | 29.20 | 0.902 | 0.607 | 0.403 | 0.408 | 0.314 | 0.289 |
FARO65 | 5.0 | 4.0 | 2.0 | 58.93 | 43.02 | 33.73 | 1.029 | 0.576 | 0.199 | 0.750 | 0.282 | 0.094 |
PCT111 | 5.0 | 3.5 | 3.0 | 44.11 | 34.69 | 29.85 | 0.746 | 0.346 | 0.149 | 0.252 | 0.174 | 0.089 |
Least tolerant | ||||||||||||
NERICA2 | 5.0 | 2.0 | 1.5 | 53.54 | 20.86 | 10.88 | 0.814 | 0.402 | 0.017 | 0.409 | 0.084 | 0.011 |
PRIMAVERA | 5.0 | 2.5 | 1.0 | 54.51 | 33.72 | 21.16 | 0.837 | 0.449 | 0.092 | 0.457 | 0.189 | 0.002 |
OFADA2 | 5.0 | 2.0 | 1.0 | 56.94 | 20.18 | 19.43 | 1.013 | 0.795 | 0.022 | 0.352 | 0.036 | 0.008 |
WAB638-1 | 5.0 | 2.0 | 1.0 | 57.52 | 23.48 | 16.24 | 0.669 | 0.201 | 0.043 | 0.208 | 0.054 | 0.005 |
NERICA7 | 5.0 | 1.5 | 1.0 | 65.32 | 33.29 | 24.17 | 0.813 | 0.402 | 0.022 | 0.409 | 0.084 | 0.011 |
Mean | 5.00 | 2.95 | 2.05 | 51.79 | 30.90 | 25.12 | 0.849 | 0.491 | 0.197 | 0.429 | 0.208 | 0.122 |
F values (ANOVA) | ||||||||||||
G | 41.00 *** | 75.55 *** | 371.04 *** | 1618.75 *** | ||||||||
T | 627.25 *** | 2162.414 *** | 6920.06 *** | 6706.19 *** | ||||||||
G × T | 19.75 *** | 65.73 *** | 111.69 *** | 234.94 *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oyedeji, O.; Sakariyawo, O.; Adeboye, K.; Fofana, M.; Daniel, O. Effects of Alkalinity-Induced Iron Deficiency on Physiological and Growth Variables of Some Upland Rice Cultivars under Laboratory Condition. Biol. Life Sci. Forum 2022, 11, 63. https://doi.org/10.3390/IECPS2021-12052
Oyedeji O, Sakariyawo O, Adeboye K, Fofana M, Daniel O. Effects of Alkalinity-Induced Iron Deficiency on Physiological and Growth Variables of Some Upland Rice Cultivars under Laboratory Condition. Biology and Life Sciences Forum. 2022; 11(1):63. https://doi.org/10.3390/IECPS2021-12052
Chicago/Turabian StyleOyedeji, Olayinka, Olalekan Sakariyawo, Kehinde Adeboye, Mamadou Fofana, and Oludayo Daniel. 2022. "Effects of Alkalinity-Induced Iron Deficiency on Physiological and Growth Variables of Some Upland Rice Cultivars under Laboratory Condition" Biology and Life Sciences Forum 11, no. 1: 63. https://doi.org/10.3390/IECPS2021-12052
APA StyleOyedeji, O., Sakariyawo, O., Adeboye, K., Fofana, M., & Daniel, O. (2022). Effects of Alkalinity-Induced Iron Deficiency on Physiological and Growth Variables of Some Upland Rice Cultivars under Laboratory Condition. Biology and Life Sciences Forum, 11(1), 63. https://doi.org/10.3390/IECPS2021-12052