Investigation of the Physiological and Biochemical Responses of Echinacea purpurea under Salinity Stress †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cholorophyll Assays
2.2. Total Polyphenol Content
2.3. DPPH Radical Scavenging Assay
2.4. Relative Water Content
2.5. Chlorophyll Fluorescence
2.6. Ion Leakage
2.7. Proline
2.8. Measurement of Elements
3. Results and Discussion
3.1. Cholorophyll Assays
3.2. Total Polyphenol Content
3.3. DPPH Radical Scavenging
3.4. Relative Water Content
3.5. Chlorophyll Fluorescence
3.6. Ion Leakage
3.7. Proline Content
3.8. Element Content
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Oueslati, S.; Karray-Bouraoui, N.; Attia, H.; Rabhi, M.; Ksouri, R.; Lachaâl, M. Physiological and antioxidant responses of Mentha pulegium (Pennyroyal) to salt stress. Acta Physiol. Plant. 2009, 32, 289–296. [Google Scholar] [CrossRef]
- Novak, J.; Blüthner, W.D. Medicinal, Aromatic and Stimulant Plants; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Lindstrom, A.; Ooyen, C.; Lynch, M.E.; Blumenthal, M.; Kawa, K. Sales of herbal dietary supplements increase by 7.9% in 2013, marking a decade of rising sales: Turmeric supplements climb to top ranking in natural channel. HerbalGram 2014, 103, 52–56. [Google Scholar]
- Smith, T.; Lynch, M.E.; Johnson, J.; Kawa, K.; Bauman, H.; Blumenthal, M. Herbal dietary supplement sales in US increase 6.8% in 2014. HerbalGram 2015, 107, 52–59. [Google Scholar]
- Sharma, P.; Jha, A.B.; Dubey, R.S.; Pessarakli, M. Reactive Oxygen Species, Oxidative Damage, and Antioxidative Defense Mechanism in Plants under Stressful Conditions. J. Bot. 2012, 2012. [Google Scholar] [CrossRef] [Green Version]
- Pérez-López, U.; Robredo, A.; Lacuesta, M.; Sgherri, C.; Muñoz-Rueda, A.; Navari-Izzo, F.; Mena-Petite, A. The oxidative stress caused by salinity in two barley cultivars is mitigated by elevated CO2. Physiol. Plant. 2009, 135, 29–42. [Google Scholar] [CrossRef] [PubMed]
- Hakimi, Y.; Fatahi, R.; Shokrpour, M.; Naghavi, M.R. Investigation of Germination Characteristics of Four Medicinal Plants Seed (Lavender, Hyssop, Black cumin and Scrophularia) Under Interaction between Salinity Stress and Temperature Levels. J. Genet. Resour. 2022, 8, 35–45. [Google Scholar]
- Khorasaninejad, S.; Zare, F.; Hemmati, K. Effects of silicon on some phytochemical traits of purple coneflower (Echinacea purpurea L.) under salinity. Sci. Hortic. 2020, 264, 108954. [Google Scholar] [CrossRef]
- Abd EL-Azim, W.M.; Ahmed, S.T. Effect of salinity and cutting date on growth and chemical constituents of Achillea fragratissima Forssk, under Ras Sudr conditions. Res. J. Agric. Biol. Sci. 2009, 5, 1121–1129. [Google Scholar]
- Abd El-Wahab, M.A. The efficiency of using saline and fresh water irrigation as alternating methods of irrigation on the productivity of Foeniculum vulgare Mill subsp. vulgare var. vulgare under North Sinai conditions. Res. J. Agric. Biol. Sci. 2006, 2, 571–577. [Google Scholar]
- Ahl, S.A.; Omer, E.A. Medicinal and aromatic plants production under salt stress. A review. Herba Polonica 2011, 57, 72–87. [Google Scholar]
- Osman, M.E.; Elfeky, S.S.; El-Soud, K.A.; Hasan, A.M. Response of Catharanthus roseus Shoots to Salinity and Drought in Relation to Vincristine Alkaloid Content. Asian J. Plant Sci. 2007, 6, 1223–1228. [Google Scholar] [CrossRef]
- Yavari, A.; Shokrpour, M.; Tabrizi, L.; Hadian, J. Analysis of morphological variation and general combining ability in half sib families of Echinacea purpurea L. Iran. J. Hortic. Sci. 2017, 47, 617–630. [Google Scholar]
- Babalar, M.; Asghari, M.; Talaei, A.; Khosroshahi, A. Effect of pre- and postharvest salicylic acid treatment on ethylene production, fungal decay and overall quality of Selva strawberry fruit. Food Chem. 2007, 105, 449–453. [Google Scholar] [CrossRef]
- Arnon, D.I. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol. 1949, 24, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stankovic, M.S. Total phenolic content, flavonoid concentration and antioxidant activity of Marrubium peregrinum L. extracts. Kragujevac J. Sci. 2011, 33, 63–72. [Google Scholar]
- Cameron, R.W.F.; Harrison-Murray, R.S.; Scott, M.A. The use of controlled water stress to manipulate growth of container-grown Rhododendron cv. Hoppy. J. Hortic. Sci. Biotechnol. 1999, 74, 161–169. [Google Scholar] [CrossRef]
- Tsai, Y.-L.; Chiou, S.-Y.; Chan, K.-C.; Sung, J.-M.; Lin, S.-D. Caffeic acid derivatives, total phenols, antioxidant and antimutagenic activities of Echinacea purpurea flower extracts. LWT 2012, 46, 169–176. [Google Scholar] [CrossRef]
- Tahmasebi, F. Physiological Study of the Effect of Irrigation with Saline Water from NaCl and CaCl2 Sources on Three Rapeseed Genotypes in Ahvaz Climatic Conditions; University of shahid chamran Ahvaz: Khuzestan, Iran, 2012. [Google Scholar]
- Cappellari, L.D.R.; Chiappero, J.; Palermo, T.B.; Giordano, W.; Banchio, E. Volatile Organic Compounds from Rhizobacteria Increase the Biosynthesis of Secondary Metabolites and Improve the Antioxidant Status in Mentha piperita L. Grown under Salt Stress. Agronomy 2020, 10, 1094. [Google Scholar] [CrossRef]
- Zrig, A.; Ferreira, J.F.S.; Hamouda, F.; Tounekti, T.; Selim, S.; Al Jaouni, S.; Khemira, H.; AbdelGawad, H. The impact of foliar fertilizers on growth and biochemical responses of Thymus vulgaris to salinity stress. Arid. Land Res. Manag. 2019, 33, 297–320. [Google Scholar] [CrossRef]
- Sabra, A.; Daayf, F.; Renault, S. Differential physiological and biochemical responses of three Echinacea species to salinity stress. Sci. Hortic. 2012, 135, 23–31. [Google Scholar] [CrossRef]
Traits | t-Value | p-Value | Salinity Level | Control Level | Difference |
---|---|---|---|---|---|
Chlorophyll a (mg/g fw) | 12.33 | 0.00 | 0.40 | 1.28 | 0.87 |
Chlorophyll b (mg/g fw) | 12.48 | 0.00 | 0.32 | 1.05 | 0.73 |
Total chlorophyll (mg/g fw) | 13.39 | 0.00 | 0.72 | 2.34 | 1.61 |
Carotenoid (mg/g fw) | 2.32 | 0.024 | 0.081 | 0.14 | 0.056 |
TPC (mg/g fw) | 2.85 | 0.006 | 329 | 235 | 93.70 |
DPPH (%) | 1.91 | 0.06 | 11.98 | 14.01 | 202 |
RWC (%) | 0.33 | 0.744 | 66.70 | 67.60 | 0.93 |
Fv/Fm | 0.35 | 0.729 | 0.70 | 0.68 | 0.02 |
Ion leakage (%) | 6.53 | 0.00 | 88.30 | 56 | 32.30 |
Proline (mg/g fw) | 1.87 | 0.07 | 52.40 | 41.10 | 11.36 |
Ca2+ (%) | 0.12 | 0.91 | 4.66 | 4.72 | 0.07 |
Na− (%) | 4.54 | 0.00 | 0.21 | 0.10 | 0.11 |
K+ (%) | 2.20 | 0.034 | 0.79 | 0.51 | 0.27 |
Cl− (%) | 1.75 | 0.89 | 3.84 | 3.17 | 0.67 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taghipour, M.; Shokrpour, M.; Hakimi, Y. Investigation of the Physiological and Biochemical Responses of Echinacea purpurea under Salinity Stress. Biol. Life Sci. Forum 2022, 11, 51. https://doi.org/10.3390/IECPS2021-12001
Taghipour M, Shokrpour M, Hakimi Y. Investigation of the Physiological and Biochemical Responses of Echinacea purpurea under Salinity Stress. Biology and Life Sciences Forum. 2022; 11(1):51. https://doi.org/10.3390/IECPS2021-12001
Chicago/Turabian StyleTaghipour, Mahsa, Majid Shokrpour, and Yousef Hakimi. 2022. "Investigation of the Physiological and Biochemical Responses of Echinacea purpurea under Salinity Stress" Biology and Life Sciences Forum 11, no. 1: 51. https://doi.org/10.3390/IECPS2021-12001
APA StyleTaghipour, M., Shokrpour, M., & Hakimi, Y. (2022). Investigation of the Physiological and Biochemical Responses of Echinacea purpurea under Salinity Stress. Biology and Life Sciences Forum, 11(1), 51. https://doi.org/10.3390/IECPS2021-12001