Ozone Effects on the Quality of Swiss Chard. Peri-Urban Crops a Case Study †
Abstract
:1. Introduction
2. Material and Methods
2.1. Experimental Field Facilities and Plant Material
2.2. Physiological Measurements
2.2.1. Biomass
2.2.2. Foliar Pigment Content
2.2.3. Nutrient Analysis
2.2.4. Statistical Analysis
3. Results
3.1. Growing Conditions and Ozone Concentration
3.2. Visible Injury
3.3. Biomass
3.4. Pigments Concentrations
3.5. Nutrient
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Ashmore, M.R. Assessing the future global impacts of ozone on vegetation. Plant Cell Environ. 2005, 28, 949–964. [Google Scholar] [CrossRef]
- Ainsworth, E.A.; Yendrek, C.R.; Sitch, S.; Collins, W.J.; Emberson, L.D. The Effects of Tropospheric Ozone on Net Primary Productivity and Implications for Climate Change. Annu. Rev. Plant Biol. 2012, 63, 637–661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cooper, O.R.; Parrish, D.D.; Ziemke, J.; Balashov, N.V.; Cupeiro, M.; Galbally, I.E.; Gilge, S.; Horowitz, L.; Jensen, N.R.; Lamarque, J.-F.; et al. Global distribution and trends of tropospheric ozone: An observation-based review Global distribution and trends of tropospheric ozone. Elem. Sci. Anthr. 2014, 2, 000029. [Google Scholar] [CrossRef]
- Monks, P.S.; Archibald, A.T.; Colette, A.; Cooper, O.; Coyle, M.; Derwent, R.; Fowler, D.; Granier, C.; Law, K.S.; Mills, G.E.; et al. Tropospheric ozone and its precursors from the urban to the global scale from air quality to short-lived climate forcer. Atmos. Chem. Phys. 2015, 15, 8889–8973. [Google Scholar] [CrossRef] [Green Version]
- DeLang, M.N.; Becker, J.S.; Chang, K.L.; Serre, M.L.; Cooper, O.R.; Schultz, M.G.; Schröder, S.; Lu, X.; Zhang, L.; Deushi, M.; et al. Mapping Yearly Fine Resolution Global Surface Ozone through the Bayesian Maximum Entropy Data Fusion of Observations and Model Output for 1990–2017. Environ. Sci. Technol. 2021, 55, 4389–4398. [Google Scholar] [CrossRef]
- European Environment Agency. Air Quality in Europe—2019 Report; Report No 10/2019; European Environment Agency: Copenhagen, Denmark, 2019. [Google Scholar]
- Borge, R.; Requia, W.J.; Yagüe, C.; Jhun, I.; Koutrakis, P. Impact of weather changes on air quality and related mortality in Spain over a 25 year period (1993–2017). Environ. Int. 2019, 133, 105272. [Google Scholar] [CrossRef]
- Saiz-Lopez, A.; Borge, R.; Notario, A.; Adame, J.A.; De la Paz, D.; Querol, X.; Artinano, B.; Gómez-Moreno, F.J.; Cuevas, C.A. Unexpected increase in the oxidation capacity of the urban atmosphere of Madrid, Spain. Sci. Rep. 2017, 7, 45956. [Google Scholar] [CrossRef]
- Querol, X.; Alastuey, A.; Gangoiti, G.; Perez, N.; Lee, H.K.; Eun, H.R.; Park, Y.; Mantilla, E.; Escudero, M.; Titos, G.; et al. Phenomenology of summer ozone episodes over the Madrid Metropolitan Area, central Spain. Atmos. Chem. Phys. Discuss. 2018, 18, 6511–6533. [Google Scholar] [CrossRef] [Green Version]
- Salvador, P.; Barreiro, M.; Gómez-Moreno, F.J.; Alonso-Blanco, E.; Artíñano, B. Synoptic classification of meteorological patterns and their impact on air pollution episodes and new particle formation processes in a south European air basin. Atmos. Environ. 2021, 245, 118016. [Google Scholar] [CrossRef]
- Holland, M.; Mills, G.; Hayes, F.; Buse, A.; Emberson, L.; Cambridge, H.; Cinderby, S.; Terry, A.; Ashmore, M. Economic Assessment of Crop Yield Losses from Ozone Exposure; The UNECE International Cooperative Programme on Vegetation. Contract EPG1/3/170; Center for Ecology and Hydrology and UK Department for Environment, Food and Rural Affairs: Gwynedd, UK, 2002; Volume 1, p. 170. [Google Scholar]
- Wilkinson, S.; Mills, G.; Illidge, R.; Davies, W.J. How is ozone pollution reducing our food supply? J. Exp. Bot. 2012, 63, 527–536. [Google Scholar] [CrossRef]
- Mills, G.; Sharps, K.; Simpson, D.; Pleijel, H.; Broberg, M.; Uddling, J.; Jaramillo, F.; Davies, W.J.; Dentener, F.; Berg, M.V.D.; et al. Ozone pollution will compromise efforts to increase global wheat production. Glob. Chang. Biol. 2018, 24, 3560–3574. [Google Scholar] [CrossRef] [PubMed]
- Tai, A.P.; Sadiq, M.; Pang, J.; Yung, D.H.; Feng, Z. Impacts of Surface Ozone Pollution on Global Crop Yields: Comparing Different Ozone Exposure Metrics and Incorporating Co-effects of CO2. Front. Sustain. Food Syst. 2021, 5, 63. [Google Scholar] [CrossRef]
- Fumagalli, I.; Gimeno, B.S.; Velissariou, D.; De Temmerman, L.; Mills, G. Evidence of ozone-induced adverse effects on crops in the Mediterranean region. Atmos. Environ. 2001, 35, 2583–2587. [Google Scholar] [CrossRef]
- Mills, G.; Buse, A.; Gimeno, B.; Bermejo, V.; Holland, M.; Emberson, L.; Pleijel, H. A synthesis of AOT40-based response functions and critical levels of ozone for agricultural and horticultural crops. Atmos. Environ. 2007, 41, 2630–2643. [Google Scholar] [CrossRef]
- Fagnano, M.; Maggio, A.; Fumagalli, I. Crops’ responses to ozone in Mediterranean environments. Environ. Pollut. 2009, 157, 1438–1444. [Google Scholar] [CrossRef]
- Booker, F.; Muntifering, R.; McGrath, M.; Burkey, K.; Decoteau, D.; Fiscus, E.; Manning, W.; Krupa, S.; Chappelka, A.; Grantz, D. The ozone component of global change: Potential effects on agricultural and horticultural plant yield, product quality and interactions with invasive species. J. Integr. Plant Biol. 2009, 51, 337–351. [Google Scholar] [CrossRef]
- Fuhrer, J.; Martin, M.V.; Mills, G.; Heald, C.L.; Harmens, H.; Hayes, F.; Sharps, K.; Bender, J.; Ashmore, M.R. Current and future ozone risks to global terrestrial biodiversity and ecosystem processes. Ecol. Evol. 2016, 6, 8785–8799. [Google Scholar] [CrossRef] [Green Version]
- Ainsworth, E.A. Understanding and improving global crop response to ozone pollution. Plant J. 2016, 90, 886–897. [Google Scholar] [CrossRef]
- Emberson, L.D.; Pleijel, H.; Ainsworth, E.A.; Berg, M.V.D.; Ren, W.; Osborne, S.; Mills, G.; Pandey, D.; Dentener, F.; Bueker, P.; et al. Ozone effects on crops and consideration in crop models. Eur. J. Agron. 2018, 100, 19–34. [Google Scholar] [CrossRef]
- Velissariou, D. Toxic Effects and Losses of Commercial Value of Lettuce and Other Vegetables Due to Photochemical Air Pollution in Agricultural Areas of Attica, Greece. Critical Levels for Ozone—Level II; Swiss Agency for Environment, Forest and Landscape: Bern, Switzerland, 1999; pp. 253–256. [Google Scholar]
- Oshima, R.; Taylor, O.; Cardiff, E. Possible new toxicant indicated in severe air pollution episode in south coast basin. Calif. Agric. 1974, 28, 12–13. [Google Scholar]
- Goumenaki, E.; Barnes, J. Impacts of tropospheric ozone on growth and photosynthesis of lettuce. Acta Hortic. 2009, 817, 169–176. [Google Scholar] [CrossRef]
- Temple, P.J.; Jones, T.E.; Lennox, R.W. Yield loss assessments for cultivars of broccoli, lettuce, and onion exposed to ozone. Environ. Pollut. 1990, 66, 289–299. [Google Scholar] [CrossRef]
- Calatayud, A.; Iglesias, D.J.; Talón, M.; Barreno, E. Effects of 2-month ozone exposure in spinach leaves on photosynthesis, antioxidant systems and lipid peroxidation. Plant Physiol. Biochem. 2003, 41, 839–845. [Google Scholar] [CrossRef]
- Calatayud, A.; Barreno, E. Response to ozone in two lettuce varieties on chlorophyll a fluorescence, photosynthetic pigments and lipid peroxidation. Plant Physiol. Biochem. 2004, 42, 549–555. [Google Scholar] [CrossRef]
- Goumenaki, E.; Fernandez, I.G.; Papanikolaou, A.; Papadopoulou, D.; Askianakis, C.; Kouvarakis, G.; Barnes, J. Derivation of ozone flux-yield relationships for lettuce: A key horticultural crop. Environ. Pollut. 2007, 146, 699–706. [Google Scholar] [CrossRef]
- Tiwari, S.; Agrawal, M.; Marshall, F.M. Seasonal variations in adaptational strategies of Beta vulgaris L. plants in response to ambient air pollution: Biomass allocation, yield and nutritional quality. Trop. Ecol. 2010, 51, 353–363. [Google Scholar]
- Kumari, S.; Agrawal, M.; Tiwari, S. Impact of elevated CO2 and elevated O3 on Beta vulgaris L.: Pigments, metabolites, antioxidants, growth and yield. Environ. Pollut. 2013, 174, 279–288. [Google Scholar] [CrossRef]
- Gamba, M.; Raguindin, P.F.; Asllanaj, E.; Merlo, F.; Glisic, M.; Minder, B.; Bussler, W.; Metzger, B.; Kern, H.; Muka, T. Bioactive compounds and nutritional composition of Swiss chard (Beta vulgaris L. var. cicla and flavescens): A systematic review. Crit. Rev. Food Sci. Nutr. 2020, 61, 3465–3480. [Google Scholar] [CrossRef]
- Ninfali, P.; Angelino, D. Nutritional and functional potential of Beta vulgaris cicla and rubra. Fitoterapia 2013, 89, 188–199. [Google Scholar] [CrossRef]
- Sánchez-Mata, M.C.; Loera, R.D.C.; Morales, P.; Fernández-Ruiz, V.; Cámara, M.; Marqués, C.D.; Pardo-De-Santayana, M.; Tardío, J. Wild vegetables of the Mediterranean area as valuable sources of bioactive compounds. Genet. Resour. Crop. Evol. 2012, 59, 431–443. [Google Scholar] [CrossRef]
- Mzoughi, Z.; Chahdoura, H.; Chakroun, Y.; Cámara, M.; Fernández-Ruiz, V.; Morales, P.; Mosbah, H.; Flamini, G.; Snoussi, M.; Majdoub, H. Wild edible Swiss chard leaves (Beta vulgaris L. var. cicla): Nutritional, phytochemical composition and biological activities. Food Res. Int. 2019, 119, 612–621. [Google Scholar] [CrossRef] [PubMed]
- Mills, G.; Harmens, H.; Hayes, F.; Pleijel, H.; Büker, P.; Gonzalez-Fernandez, I. (Eds.) Mapping Critical Levels for Vegetation. In Manual on Methodologies and Criteria for Modelling and Mapping Critical Loads and Levels and Air Pollution Effects, Risks and Trends; Convention on Long-Range Transboundary Air Pollution; Umwelbundesamt: Berlin, Germany, 2017. [Google Scholar]
- Marzuoli, R.; Finco, A.; Chiesa, M.; Gerosa, G. A dose-response relationship for marketable yield reduction of two lettuce (Lactuca sativa L.) cultivars exposed to tropospheric ozone in Southern Europe. Environ. Sci. Pollut. Res. 2017, 24, 26249–26258. [Google Scholar] [CrossRef] [PubMed]
- González-Fernández, I.; Elvira, S.; Calatayud, V.; Calvo, E.; Aparicio, P.; Sánchez, M.; Alonso, R.; Bermejo, V.B. Ozone effects on the physiology and marketable biomass of leafy vegetables under Mediterranean conditions: Spinach (Spinacia Oleracea L.) and Swiss chard (Beta Vulgaris L. Var. cycla). Agric. Ecosyst. Environ. 2016, 235, 215–228. [Google Scholar] [CrossRef]
- Fangmeier, A.; De Temmerman, L.; Black, C.; Persson, K.; Vorne, V. Effects of elevated CO2 and/or ozone on nutrient concentrations and nutrient uptake of potatoes. Eur. J. Agron. 2002, 17, 353–368. [Google Scholar] [CrossRef]
- Broberg, M.C.; Feng, Z.; Xin, Y.; Pleijel, H. Ozone effects on wheat grain quality—A summary. Environ. Pollut. 2015, 197, 203–213. [Google Scholar] [CrossRef] [PubMed]
Year | Ozone Exposure (Days) | (O3 ppb) a-AOT 40 (ppb·h) | |||||
---|---|---|---|---|---|---|---|
OTC | FA | NFA | NFA+ | NFA++ | RH (%) a | T (°C) a | |
2019 | 25 | (17)-0 | (36)-1869 | (42)-4084 | (49.5)-7158 | ||
43 | (17)-0 | (36)-3550 | (42)-8075 | (49.5)-13809 | 59 | 16 | |
Peri-Urban Field | Environmental O3 Concentration | ||||||
Summer (JJA) | (38)-10459 | 29 | 25 | ||||
43 | (40)-5840 | 25 | 25.5 |
Factor | N | Mg | Ca | K | Na | P | Fe | Mn | Zn | Cu |
---|---|---|---|---|---|---|---|---|---|---|
O3 | n.s. | 0.02 | 0.03 | 0.01 | n.s. | n.s. | n.s. | n.s | n.s. | n.s. |
FA | 3482 ± 160 | 1370 ± 57 a | 877 ± 66 a | 3690 ± 137 ab | 3500 ± 135 | 256 ± 17 | 21 ± 2.4 | 17 ± 0.9 | 9.16 ± 0.39 | 2.59 ± 0.20 |
NFA | 3336 ± 171 | 1229 ± 105 b | 770 ± 91 a | 3145 ± 163 b | 3636 ± 164 | 240 ± 7.6 | 18 ± 1.8 | 18 ± 1.1 | 9.77 ± 0.66 | 2.44 ± 0.22 |
NFA+ | 3354 ± 190 | 1236 ± 127 b | 727 ± 106 ab | 3160 ± 231 b | 3727 ± 201 | 253 ± 21 | 19 ± 1.3 | 16 ± 1.5 | 8.63 ± 0.91 | 2.37 ± 0.19 |
NFA++ | 3836 ± 200 | 960 ± 60 b | 541 ± 38 b | 3836 ± 143 a | 3240 ± 93 | 287 ± 15 | 17 ± 0.9 | 15 ± 1.2 | 8.45 ± 0.53 | 2.75 ± 0.17 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elvira, S.; Sanz, J.; Gonzalez-Fernandez, I.; Bermejo-Bermejo, V. Ozone Effects on the Quality of Swiss Chard. Peri-Urban Crops a Case Study. Biol. Life Sci. Forum 2022, 11, 16. https://doi.org/10.3390/IECPS2021-12016
Elvira S, Sanz J, Gonzalez-Fernandez I, Bermejo-Bermejo V. Ozone Effects on the Quality of Swiss Chard. Peri-Urban Crops a Case Study. Biology and Life Sciences Forum. 2022; 11(1):16. https://doi.org/10.3390/IECPS2021-12016
Chicago/Turabian StyleElvira, Susana, Javier Sanz, Ignacio Gonzalez-Fernandez, and Victoria Bermejo-Bermejo. 2022. "Ozone Effects on the Quality of Swiss Chard. Peri-Urban Crops a Case Study" Biology and Life Sciences Forum 11, no. 1: 16. https://doi.org/10.3390/IECPS2021-12016
APA StyleElvira, S., Sanz, J., Gonzalez-Fernandez, I., & Bermejo-Bermejo, V. (2022). Ozone Effects on the Quality of Swiss Chard. Peri-Urban Crops a Case Study. Biology and Life Sciences Forum, 11(1), 16. https://doi.org/10.3390/IECPS2021-12016