Exogenous Nitric Oxide Promotes Growth and Enhances Tolerance against Drought Stress in Banana †
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Plant Materials and Treatment
4.2. Protein Extraction
4.3. Two-Dimensional Gel Electrophoresis
4.4. Detection of Proteins
4.5. Digestion of Proteins and Protein Identification
4.6. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Food and Agriculture Organization of the United Nations (FAO). The Impact of Disasters and Crises on Agriculture and Food Security; FAO: Rome, Italy, 2017; p. 168. [Google Scholar]
- Lau, S.-E.; Hamdan, M.F.; Pua, T.-L.; Saidi, N.B.; Tan, B.C. Plant nitric oxide signaling under drought stress. Plants 2021, 10, 360. [Google Scholar] [CrossRef] [PubMed]
- Amnan, M.A.M.; Pua, T.-L.; Lau, S.-E.; Tan, B.C.; Yamaguchi, H.; Hitachi, K.; Tsuchida, K.; Komatsu, S. Osmotic stress in banana is relieved by exogenous nitric oxide. PeerJ 2021, 9, e10879. [Google Scholar] [CrossRef] [PubMed]
- Wani, K.I.; Naeem, M.; Castroverde, C.D.M.; Kalaji, H.M.; Albaqami, M.; Aftab, T. Molecular mechanisms of nitric oxide (NO) signaling and reactive oxygen species (ROS) homeostasis during abiotic stresses in plants. Int. J. Mol. Sci. 2021, 22, 9656. [Google Scholar] [CrossRef] [PubMed]
- Xiong, J.; Zhang, L.; Fu, G.; Yang, Y.; Zhu, C.; Tao, L. Drought-induced proline accumulation is uninvolved with increased nitric oxide, which alleviates drought stress by decreasing transpiration in rice. J. Plant Res. 2012, 125, 155–164. [Google Scholar] [CrossRef] [PubMed]
- Cai, W.; Liu, W.; Wang, W.S.; Fu, Z.W.; Han, T.T.; Lu, Y.T. Overexpression of rat neurons nitric oxide synthase in rice enhances drought and salt tolerance. PLoS ONE 2015, 10, e0131599. [Google Scholar] [CrossRef]
- Santisree, P.; Bhatnagar-Mathur, P.; Sharma, K.K. NO to drought-multifunctional role of nitric oxide in plant drought: Do we have all the answers? Plant Sci. 2015, 239, 44–55. [Google Scholar] [CrossRef]
- Tan, B.C.; Chin, C.F.; Alderson, P. Effects of sodium nitroprusside on shoot multiplication and regeneration of Vanilla planifolia Andrews. Vitr. Cell. Dev. Biol. Plant 2013, 49, 626–630. [Google Scholar] [CrossRef]
- Amnan, M.A.M.; Aizat, W.M.; Khaidizar, F.D.; Tan, B.C. Drought stress induces morpho-physiological and proteome changes of Pandanus amaryllifolius. Plants 2022, 11, 221. [Google Scholar] [CrossRef]
- Li, Y.; Wu, Y.; Liao, W.; Hu, L.; Dawuda, M.M.; Jin, X.; Tang, Z.; Yang, J.; Yu, J. Nitric oxide is involved in the brassinolide-induced adventitious root development in cucumber. BMC Plant Biol. 2020, 20, 102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, X.T.; Jin, X.; Liao, W.B.; Dawuda, M.M.; Li, X.P.; Wang, M.; Niu, L.J.; Ren, P.J.; Zhu, Y.C. Nitric oxide is involved in ethylene-induced adventitious root development in cucumber (Cucumis sativus L.) explants. Sci. Hortic. 2017, 215, 65–71. [Google Scholar] [CrossRef]
- Kushwaha, B.K.; Singh, A.; Tripathi, D.K.; Sharma, S.; Prasad, S.M.; Chauhan, D.K.; Kumar, V.; Singh, V.P. New adventitious root formation and primary root biomass accumulation are regulated by nitric oxide and reactive oxygen species in rice seedlings under arsenate stress. J. Hazard. Mater. 2019, 361, 134–140. [Google Scholar] [CrossRef] [PubMed]
- Tan, B.C.; Chin, C.F.; Liddell, S.; Alderson, P. Proteomic analysis of callus development in Vanilla planifolia Andrews. Plant Mol. Biol. Rep. 2013, 31, 1220–1229. [Google Scholar] [CrossRef]
- Tan, B.C.; Chin, C.F.; Liddell, S.; Alderson, P. Identified proteins in roots of Musa acuminata cv. Berangan. Minerva Biotecnol. 2014, 26, 115–126. [Google Scholar]
- Yan, J.X.; Wait, R.; Berkelman, T.; Harry, R.A.; Westbrook, J.A.; Wheeler, C.H.; Dunn, M.J. A modified silver staining protocol for visualization of proteins compatible with matrix-assisted laser desorption/ionization and electrospray ionization-mass spectrometry. Electrophoresis 2000, 21, 3666–3672. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lau, S.-E.; Tan, B.C. Exogenous Nitric Oxide Promotes Growth and Enhances Tolerance against Drought Stress in Banana. Biol. Life Sci. Forum 2022, 11, 1. https://doi.org/10.3390/IECPS2021-11943
Lau S-E, Tan BC. Exogenous Nitric Oxide Promotes Growth and Enhances Tolerance against Drought Stress in Banana. Biology and Life Sciences Forum. 2022; 11(1):1. https://doi.org/10.3390/IECPS2021-11943
Chicago/Turabian StyleLau, Su-Ee, and Boon Chin Tan. 2022. "Exogenous Nitric Oxide Promotes Growth and Enhances Tolerance against Drought Stress in Banana" Biology and Life Sciences Forum 11, no. 1: 1. https://doi.org/10.3390/IECPS2021-11943
APA StyleLau, S.-E., & Tan, B. C. (2022). Exogenous Nitric Oxide Promotes Growth and Enhances Tolerance against Drought Stress in Banana. Biology and Life Sciences Forum, 11(1), 1. https://doi.org/10.3390/IECPS2021-11943