Optimizing Zinc Selenide and Silicon-Based Heterojunction Solar Cells for Enhanced Photovoltaic Performance
Abstract
1. Introduction
2. Device Architecture
3. Numerical Simulation and Parameters of Materials
SnO2 | TiO2 | ZnSe | CdS | p-Si | p+-Si | |
---|---|---|---|---|---|---|
Thickness (μm) | 0.10 | 0.10 | 0.10 | 0.10 | 0.05 | - |
Bandgap (eV) | 3.50 | 2.26 | 2.90 | 2.40 | 1.12 | 1.12 |
Electron affinity (eV) | 4.50 | 4.20 | 4.06 | 4 | 4.05 | 4.05 |
Relative dielectric permittivity | 9.00 | 9.00 | 10 | 10 | 11.90 | 11.90 |
CB effective density of states (1/cm3) | 2.2 × 1017 | 2 × 1017 | 1.5 × 1018 | 2.2 × 1018 | 2.82 × 1019 | 2.82 × 1019 |
VB effective density of states (1/cm3) | 2.2 × 1016 | 6 × 1017 | 1.8 × 1018 | 1.8 × 1019 | 1.04 × 1019 | 1.04 × 1019 |
Electron thermal velocity (cm/s) | 1 × 1017 | 1 × 1017 | 1 × 1017 | 1 × 1017 | 1 × 1017 | 1 × 1017 |
Hole thermal velocity (cm/s) | 1 × 1017 | 1 × 1017 | 1 × 1017 | 1 × 1017 | 1 × 1017 | 1 × 1017 |
Electron mobility (cm2/Vs) | 20 | 100 | 50 | 100 | 1.041 × 103 | 2.02 × 102 |
Hole mobility (cm2/Vs) | 10 | 250 | 10 | 25 | 4.12 × 102 | 77 |
Shallow uniform donor density ND (1/cm3) | 2.42 × 1019 | 1 × 1017 | 9 × 1018 | 1.1 × 1018 | 1 × 1016 | 0 |
Shallow uniform acceptor density NA (1/cm3) | 0 | 0 | 0 | 0 | 1 × 1016 | 1 × 1019 |
TiO2 | SnO2 | ZnSe | CdS | p-Si | |
---|---|---|---|---|---|
Defect type | Neutral | Neutral | Neutral | Neutral | Neutral |
Capture cross section of electrons (cm2) | 1 × 10−15 | 1 × 10−15 | 1 × 10−17 | 1 × 10−17 | 1 × 10−15 |
Capture cross section of holes (cm2) | 1 × 10−15 | 1 × 10−15 | 1 × 10−13 | 1 × 10−13 | 1 × 10−15 |
Reference for the defect energy level Et | Above the highest Ev | ||||
Energy with respect to reference (eV) | 0.6 | 0.6 | 0.1 | 0.1 | 0.6 |
total density (1/cm3) | 1 × 1014 | 1 × 1014 | 1 × 1014 | 1 × 1014 | 1 × 1014 |
Interface | ||
---|---|---|
CdS/SnO2; CdS/TiO2; ZnSe/SnO2; ZnSe/TiO2 | p-Si/CdS; p-Si/ZnSe | |
Defect type | neutral | neutral |
Capture cross section of electrons (cm2) | 1 × 10−19 | 1 × 10−19 |
Capture cross section of holes (cm2) | 1 × 10−19 | 1 × 10−19 |
Reference for the defect energy level Et | Above the highest Ev | Above the highest Ev |
Energy with respect to reference (eV) | 0.6 | 0.6 |
Total density (1/cm3) | 1 × 1010 | 1 × 1010 |
4. Results and Discussion
4.1. Influence of Back Surface Field Thickness P+-Si (BSF)
4.2. Influence of Doping Concentration of Back Surface Field Thickness (BSF)
4.3. Effect of Thickness and Acceptor Density of the Absorber Layers
4.4. Effect of Thickness and Donor Density of the Electron Transport Layers
4.5. Influence the Interface Defects
4.6. Influence of Back Contact Work Function, Series Resistance (Rs), and Shunt Resistance (Rsh)
4.7. Influence of Operating Temperature
4.8. Optimized Device Performance
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Owusu, P.A.; Asumadu-Sarkodie, S. A review of renewable energy sources, sustainability issues and climate change mitigation. Cogent Eng. 2016, 3, 1167990. [Google Scholar] [CrossRef]
- Mele, M.; Gurrieri, A.R.; Morelli, G.; Magazzino, C. Nature and climate change effects on economic growth: An LSTM experiment on renewable energy resources. Environ. Sci. Pollut. Res. 2021, 28, 41127–41134. [Google Scholar] [CrossRef] [PubMed]
- Hosseinnezhad, M.; Gharanjig, K.; Yazdi, M.K.; Zarrintaj, P.; Moradian, S.; Saeb, M.R.; Stadler, F.J. Dye-sensitized solar cells based on natural photosensitizers: A green view from Iran. J. Alloys Compd. 2020, 828, 154329. [Google Scholar] [CrossRef]
- Li, G.; Li, M.; Taylor, R.; Hao, Y.; Besagni, G.; Markides, C.N. Solar energy utilisation: Current status and roll-out potential. Appl. Therm. Eng. 2022, 209, 118285. [Google Scholar] [CrossRef]
- Laouid, A.; Alaoui Belghiti, A.; Wisniewski, K.; Hajjaji, A.; Sahraoui, B.; Zawadzka, A. Generation of red light with intense photoluminescence assisted by Forster resonance energy transfer from Znq2 and DCM thin films. Environ. Sci. Pollut. Res. 2022, 30, 81647–81666, 1–20. [Google Scholar] [CrossRef]
- Abbood, A.M.; Abed, Q.A. Using the nano-composite coating technology to improve PV solar cell performance: A review. AIP Conf. Proc. 2023, 2776, 090001. [Google Scholar] [CrossRef]
- Laouid, A.; Alaoui Belghiti, A.; Wisniewski, K.; Strzelecki, J.; Karakas, A.; Gozutok, A.; El kouari, Y.; Bouich, A.; Tlemçani, M.; Plociennik, P.; et al. Optical and morphological properties of DCM thin films co-doped of Znq2 by PVD: Theoretical and experimental investigations. Vacuum 2024, 222, 112997. [Google Scholar] [CrossRef]
- Mamta; Kumar, R.; Kumari, R.; Maurya, K.K.; Singh, V.N. Sb2(S, Se)3-based photovoltaic cell with MoS2 as a hole transport layer: A numerical investigation. Mater. Today Sustain. 2022, 20, 100218. [Google Scholar] [CrossRef]
- Laouid, A.; Alaoui Belghiti, A.; Wisniewski, K.; Hajjaji, A.; Zawadzka, A. Structural and optical properties of DCM thin films prepared by PVD. Mater. Today Proc. 2022, 66, 63–67. [Google Scholar] [CrossRef]
- Laouid, A.; Alaoui Belghiti, A.; Wisniewski, K.; Boumhamdi, M.; Strzelecki, J.; Plociennik, P.; Hajjaji, A.; Zawadzka, A. A study of morphological, optical, and photoluminescence properties of ZnS thin films doped Mn and ca. Mater. Chem. Phys. 2024, 318, 129270. [Google Scholar] [CrossRef]
- Nikpay, M.A.; Mortazavi, S.Z.; Aghaei, M.; Elahi, S.M.; Reyhani, A. Prospect of single and coupled heterojunction solar cells based on n-MoS2 and n-WS2. Mater. Sci. Eng. B 2021, 274, 115493. [Google Scholar] [CrossRef]
- Zyoud, S.H.; Zyoud, A.H.; Ahmed, N.M.; Abdelkader, A.F.I. Numerical Modelling Analysis for Carrier Concentration Level Optimization of CdTe Heterojunction Thin Film–Based Solar Cell with Different Non–Toxic Metal Chalcogenide Buffer Layers Replacements: Using SCAPS–1D Software. Crystals 2021, 11, 1454. [Google Scholar] [CrossRef]
- Bilal, B.; Najeeb-ud-Din, H. Towards low cost, industrially compatible silicon heterojunction solar cells using hybrid carrier selective passivating contacts. Opt. Mater. 2022, 124, 111957. [Google Scholar] [CrossRef]
- Kiruthiga, G.; Rajni, K.S.; Geethanjali, N.; Raguram, T.; Nandhakumar, E.; Senthilkumar, N. SnO2: Investigation of optical, structural, and electrical properties of transparent conductive oxide thin films prepared by nebulized spray pyrolysis for photovoltaic applications. Inorg. Chem. Commun. 2022, 145, 109968. [Google Scholar] [CrossRef]
- Yadav, S.; Yadav, K.; Dhar, R.; Mohan, D. Synthesis and characterization of thermally evaporated Er-doped SnO2 thin films for photonic applications. Micro Nanostructures 2023, 174, 207493. [Google Scholar] [CrossRef]
- Brunet, E.; Maier, T.; Mutinati, G.C.; Steinhauer, S.; Köck, A.; Gspan, C.; Grogger, W. Comparison of the gas sensing performance of SnO2 thin film and SnO2 nanowire sensors. Sens. Actuators B Chem. 2012, 165, 110–118. [Google Scholar] [CrossRef]
- Su, L.; Zuo, Y.; Xie, J. Scalable manufacture of vertical p-GaN/n-SnO2 heterostructure for self-powered ultraviolet photodetector, solar cell and dual-color light emitting diode. InfoMat 2021, 3, 598–610. [Google Scholar] [CrossRef]
- Jaishree, N.; Hashmi, A.; Katre, Y.R.; Singh, R.S.; Singh, J.; Srivastava, A.; Singh, A.K. The influence of different complexing agents on the properties of tin dioxide (SnO2) deposited thin films through chemical bath approach. Phys. B Condens. Matter 2023, 650, 414520. [Google Scholar] [CrossRef]
- Soumya, S.S.; Xavier, T.S. Effect of cobalt doping on the microstructural, optical and electrical properties of SnO2 thin films by sol-gel spin coating technique. Phys. B Condens. Matter 2022, 624, 413432. [Google Scholar] [CrossRef]
- Gupta, S.P.; Sanap, P.P.; Dilwale, G.V.; Bulakhe, R.N.; Jagadale, A.D.; Deore, M.K.; Bhalerao, A.B.; Lokhande, C.D. Nanostructured Zinc Selenide (ZnSe) Thin Films Deposited by Various Modes of Electrodeposition for Photovoltaic Application. ES Energy Environ. 2023, 20, 910. [Google Scholar] [CrossRef]
- Ikhioya, I.L.; Ugwuoke, C.O.; Okoli, D.N.; Ekpunobi, A.J.; Maaza, M.; Ezema, F.I. Effect of cobalt on the photovoltaic properties of zinc selenide thin film deposited on fluorine-doped tin oxide (FTO) via electrochemical deposition technique. Curr. Res. Green Sustain. Chem. 2022, 5, 100328. [Google Scholar] [CrossRef]
- Ikhioya, I.L.; Nkele, A.C.; Okoli, D.N. Effects of temperature and ph variations on electrochemically-deposited zirconium-doped zinc selenide thin films. Optik 2022, 260, 169055. [Google Scholar] [CrossRef]
- Ganesha Krishna, V.S.; Mahesha, M.G. Analysis of surface properties of Mg doped ZnS and ZnSe thin films through x-ray photoelectron spectroscopy. J. Electron Spectrosc. Relat. Phenom. 2023, 266, 147341. [Google Scholar] [CrossRef]
- Najm, A.S.; Naeem, H.S.; Alabboodi, K.O.; Hasbullah, S.A.; Hasan, H.A.; Holi, A.M.; AL-Zahrani, A.A.; Sopian, K.; Bais, B.; Majdi, H.S.; et al. New systematic study approach of green synthesis CdS thin film via Salvia dye. Sci. Rep. 2022, 12, 12521. [Google Scholar] [CrossRef]
- El-Shaer, A.; Ezzat, S.; Habib, M.A.; Alduaij, O.K.; Meaz, T.M.; El-Attar, S.A. Influence of Deposition Time on Structural, Morphological, and Optical Properties of CdS Thin Films Grown by Low-Cost Chemical Bath Deposition. Crystals 2023, 13, 788. [Google Scholar] [CrossRef]
- Ismail, W.; Ibrahim, G.; Habib, M.A.; Alduaij, O.K.; Abdelfatah, M.; El-Shaer, A. Advancement of Physical and Photoelectrochemical Properties of Nanostructured CdS Thin Films toward Optoelectronic Applications. Nanomaterials 2023, 13, 1764. [Google Scholar] [CrossRef]
- Ge, S.; Sang, D.; Zou, L.; Yao, Y.; Zhou, C.; Fu, H.; Xi, H.; Fan, J.; Meng, L.; Wang, C. A Review on the Progress of Optoelectronic Devices Based on TiO2 Thin Films and Nanomaterials. Nanomaterials 2023, 13, 1141. [Google Scholar] [CrossRef]
- Yousefi, F.; Mousavi, S.B.; Heris, S.Z.; Naghash-Hamed, S. UV-shielding properties of a cost-effective hybrid PMMA-based thin film coatings using TiO2 and ZnO nanoparticles: A comprehensive evaluation. Sci. Rep. 2023, 13, 7116. [Google Scholar] [CrossRef]
- Althamthami, M.; Guettaf Temam, E.; Temam, H.B.; Saad, R.; Hasan, G.G. Improved photocatalytic activity under the sunlight of high transparent hydrophilic Bi-doped TiO2 thin-films. J. Photochem. Photobiol. A Chem. 2023, 443, 114818. [Google Scholar] [CrossRef]
- Kanmaz, İ. Simulation of CdS/p-Si/p+-Si and ZnO/CdS/p-Si/p+-Si heterojunction solar cells. Results Opt. 2023, 10, 100353. [Google Scholar] [CrossRef]
- Titova, A.M.; Shengurov, V.G.; Filatov, D.O.; Denisov, S.A.; Chalkov, V.Y.u.; Ved’, M.V.; Zaitzev, A.V.; Sushkov, A.A.; Alyabina, N.A. Epitaxial n+-Ge/p+-Si(001) heterostructures with ultra sharp doping profiles for light emitting diode applications. Mater. Sci. Eng. B 2023, 289, 116219. [Google Scholar] [CrossRef]
- Lee, H.J.; Kim, D.; Choi, W.S.; Kim, C.; Choi, S.-J.; Bae, J.-H.; Kim, D.M.; Kim, S.; Kim, D.H. Effect of oxygen flow rate on long-term and short-term Schottky barrier modulations in Pd/IGZO/SiO2/p+-Si memristors. Mater. Sci. Semicond. Process. 2023, 153, 107183. [Google Scholar] [CrossRef]
- Al-Hattab, M.; Moudou, L.; Khenfouch, M.; Bajjou, O.; Chrafih, Y.; Rahmani, K. Numerical simulation of a new heterostructure CIGS/GaSe solar cell system using SCAPS-1D software. Sol. Energy 2021, 227, 13–22. [Google Scholar] [CrossRef]
- Kumari, N.; Ingole, S. Enhancement of CZTS photovoltaic device performance with silicon at back-contact: A study using SCAPS-1D. Sol. Energy 2022, 236, 301–307. [Google Scholar] [CrossRef]
- Yadav, R.K.; Pawar, P.S.; Nandi, R.; Neerugatti, K.E.; Kim, Y.T.; Cho, J.Y.; Heo, J. A qualitative study of SnSe thin film solar cells using SCAPS 1D and comparison with experimental results: A pathway towards 22.69% efficiency. Sol. Energy Mater. Sol. Cells 2022, 244, 111835. [Google Scholar] [CrossRef]
- Salem, M.S.; Shaker, A.; Almurayziq, T.S.; Alshammari, M.T. Prospective efficiency boosting of full-inorganic single-junction Sb2(S, Se)3 solar cell. Sol. Energy Mater. Sol. Cells 2022, 248, 112001. [Google Scholar] [CrossRef]
- Ouédraogo, S.; Zougmoré, F.; Ndjaka, J.M. Numerical Analysis of Copper-Indium-Gallium-Diselenide-Based Solar Cells by SCAPS-1D. Int. J. Photoenergy 2013, 2013, 421076. [Google Scholar] [CrossRef]
- Djinkwi Wanda, M.; Ouédraogo, S.; Tchoffo, F.; Zougmoré, F.; Ndjaka, J.M.B. Numerical Investigations and Analysis of Cu2ZnSnS4 Based Solar Cells by SCAPS-1D. Int. J. Photoenergy 2016, 2016, 2152018. [Google Scholar] [CrossRef]
- Burgelman, M.; Nollet, P.; Degrave, S. Modelling polycrystalline semiconductor solar cells. Thin Solid Films 2000, 361–362, 527–532. [Google Scholar] [CrossRef]
- Abdelfatah, M.; El Sayed, A.M.; Ismail, W.; Ulrich, S.; Sittinger, V.; El-Shaer, A. SCAPS simulation of novel inorganic ZrS2/CuO heterojunction solar cells. Sci. Rep. 2023, 13, 4553. [Google Scholar] [CrossRef]
- Shankar, G.; Kumar, P.; Pradhan, B. All-perovskite two-terminal tandem solar cell with 32.3% efficiency by numerical simulation. Mater. Today Sustain. 2022, 20, 100241. [Google Scholar] [CrossRef]
- Ait Abdelkadir, A.; Sahal, M. Theoretical development of the CZTS thin-film solar cell by SCAPS-1D software based on experimental work. Mater. Sci. Eng. B 2023, 296, 116710. [Google Scholar] [CrossRef]
- Ritu; Gagandeep; Kumar, R.; Chand, F. Optimization of ITO/SnO2/FASnI3/PCBM/Ag based perovskite solar cell. Mater. Today Proc. 2023. [Google Scholar] [CrossRef]
- Johrin, N.; Chee, F.P.; Nasir, S.; Moh, P.Y. Numerical study and optimization of GO/ZnO based perovskite solar cell using SCAPS. AIMS Energy 2023, 11, 683–693. [Google Scholar] [CrossRef]
- Zyoud, S.; Zyoud, A. Simulation and Numerical Investigation of the Effect of Temperature and Defect on ZnTe/ZnSe/ZnO Thin-Film Photovoltaic Solar Cell Performance Efficiency. Int. J. Eng. Appl. 2023, 11, 1–10. [Google Scholar] [CrossRef]
- El Ouarie, N.; El Hamdaoui, J.; Sahoo, G.S.; Rodriguez-Osorio, K.G.; Courel, M.; Zazoui, M.; Pérez, L.M.; Laroze, D.; Feddi, E. Modeling of highly efficient CNGS based kesterite solar cell: A DFT study along with SCAPS-1D analysis. Sol. Energy 2023, 263, 111929. [Google Scholar] [CrossRef]
- Kannan, P.K.; Anandkumar, M. A theoretical investigation to boost the efficiency of CZTS solar cells using SCAPS-1D. Optik 2023, 288, 171214. [Google Scholar] [CrossRef]
- Shukla, V.; Panda, G. The performance study of CdTe/CdS/SnO2 solar cell. Mater. Today Proc. 2020, 26, 487–491. [Google Scholar] [CrossRef]
- Faremi, A.A.; Olubosede, O.; Salau, A.O.; Adigbo, S.O.; Olubambi, P.A.; Lawan, E. Variability of temperature on the electrical properties of heterostructured CIS/Cds through SCAPS simulation for photovoltaic applications. Mater. Renew. Sustain. Energy 2023, 12, 235–246. [Google Scholar] [CrossRef]
- Biswas, S.K.; Ahmed, M.M.; Orthe, M.F.; Sumon, M.S.; Sarker, K. Numerical Investigation of High Efficiency Cu2SnSe3 Thin Film Solar Cell with a Suitable ZnSe Buffer Layer Using SCAPS 1D Software. Eur. J. Electr. Eng. Comput. Sci. 2023, 7, 63–70. [Google Scholar] [CrossRef]
- Mamta; Singh, Y.; Maurya, K.K.; Singh, V.N. n-Si/p-Sb2Se3 structure based simple solar cell device. Mater. Today Sustain. 2022, 18, 100148. [Google Scholar] [CrossRef]
- Souri, S.; Marandi, M. Numerical modelling of the effect of the Ag: ZnSe BSF layer on the high performance of ZnSe/CdTe thin film solar cells by SCAPS-1D software. Opt. Quantum Electron. 2023, 55, 397. [Google Scholar] [CrossRef]
- Bliya, A.; Lachhab, S.E.; Al Ibrahmi, E. Improving the semiconductor performance of SnO2/CdS/CuBi2O4 by optimizing the optical properties of the CuBi2O4 absorbent layer. Micro Nanostructures 2023, 183, 207667. [Google Scholar] [CrossRef]
- Chauhan, S.; Singh, R. Analysis of absorber layer for wide-bandgap double perovskite solar cell using SCAPS-1D. Mater. Today Proc. 2023. [Google Scholar] [CrossRef]
- Ahmed, S.R.A.; Sunny, A.; Rahman, S. Performance enhancement of Sb2Se3 solar cell using a back surface field layer: A numerical simulation approach. Sol. Energy Mater. Sol. Cells 2021, 221, 110919. [Google Scholar] [CrossRef]
- Wang, J.C.; Ren, X.C.; Shi, S.Q.; Leung, C.W.; Chan, P.K.L. Charge accumulation induced S-shape J–V curves in bilayer heterojunction organic solar cells. Org. Electron. 2011, 12, 880–885. [Google Scholar] [CrossRef]
- Schulte, K.L.; Simon, J.; Steiner, M.A.; Ptak, A.J. Modeling and design of III–V heterojunction solar cells for enhanced performance. Cell Rep. Phys. Sci. 2023, 4, 101541. [Google Scholar] [CrossRef]
- Barman, B.; Kalita, P.K. Influence of back surface field layer on enhancing the efficiency of CIGS solar cell. Sol. Energy 2021, 216, 329–337. [Google Scholar] [CrossRef]
- Benzetta, A.E.H.; Abderrezek, M.; Djeghlal, M.E. Contribution to improve the performances of Cu2ZnSnS4 thin-film solar cell via a back surface field layer. Optik 2019, 181, 220–230. [Google Scholar] [CrossRef]
- Karade, V.C.; Jang, J.S.; Kumbhar, D.; Rao, M.; Pawar, P.S.; Kim, S.; Gour, K.S.; Park, J.; Heo, J.; Dongale, T.D.; et al. Combating open circuit voltage loss in Sb2Se3 solar cell with an application of SnS as a back surface field layer. Sol. Energy 2022, 233, 435–445. [Google Scholar] [CrossRef]
- Bal, S.S.; Basak, A.; Singh, U.P. Numerical modeling and performance analysis of Sb-based tandem solar cell structure using SCAPS—1D. Opt. Mater. 2022, 127, 112282. [Google Scholar] [CrossRef]
- Khan, R.; Ahmed, S.F.; Khalid, M.; Joshi, B. Investigating Effect of CdS Buffer Layer on the Performance of Cu2ZnSnS4 Based Solar Cells Using SCAPS-1D. Trans. Electr. Electron. Mater. 2021, 22, 177–184. [Google Scholar] [CrossRef]
- Ratcliff, E.L.; Garcia, A.; Paniagua, S.A.; Cowan, S.R.; Giordano, A.J.; Ginley, D.S.; Marder, S.R.; Berry, J.J.; Olson, D.C. Investigating the Influence of Interfacial Contact Properties on Open Circuit Voltages in Organic Photovoltaic Performance: Work Function Versus Selectivity. Adv. Energy Mater. 2013, 3, 647–656. [Google Scholar] [CrossRef]
- Nowsherwan, G.A.; Iqbal, M.A.; Rehman, S.U.; Zaib, A.; Sadiq, M.I.; Dogar, M.A.; Azhar, M.; Maidin, S.S.; Hussain, S.S.; Morsy, K.; et al. Numerical optimization and performance evaluation of ZnPC:PC70BM based dye-sensitized solar cell. Sci. Rep. 2023, 13, 10431. [Google Scholar] [CrossRef] [PubMed]
SnO2 | ZnSe | p-Si | p+-Si | |
---|---|---|---|---|
Thickness (μm) | 0.050 | 0.08 | 0.05 | 2 |
Bandgap (eV) | 3.50 | 2.90 | 1.12 | 1.12 |
Electron affinity (eV) | 4.50 | 4.06 | 4.05 | 4.05 |
Relative dielectric permittivity | 9.00 | 10 | 11.90 | 11.90 |
CB effective density of states (1/cm3) | 2.2 × 1017 | 1.5 × 1018 | 2.82 × 1019 | 2.82 × 1019 |
VB effective density of states (1/cm3) | 2.2 × 1016 | 1.8 × 1018 | 1.04 × 1019 | 1.04 × 1019 |
Electron thermal velocity (cm/s) | 1 × 1017 | 1 × 1017 | 1 × 1017 | 1 × 1017 |
Hole thermal velocity (cm/s) | 1 × 1017 | 1 × 1017 | 1 × 1017 | 1 × 1017 |
Electron mobility (cm2/Vs) | 20 | 50 | 1.041 × 103 | 2.02 × 102 |
Hole mobility (cm2/Vs) | 10 | 10 | 4.12 × 102 | 77 |
Shallow uniform donor density ND (1/cm3) | 1018 | 1018 | 1 × 1016 | 0 |
Shallow uniform acceptor density NA (1/cm3) | 0 | 0 | 1 × 1016 | 1 × 1019 |
SnO2 | ZnSe | P-Si | Interface | ||
---|---|---|---|---|---|
ZnSe/p_Si | SnO2/ZnSe | ||||
Defect type | Neutral | Neutral | Neutral | neutral | neutral |
Capture cross section of electrons (cm2) | 1 × 10−15 | 1 × 10−17 | 1 × 10−15 | 1 × 10−19 | 1 × 10−19 |
Capture cross section of holes (cm2) | 1 × 10−15 | 1 × 10−13 | 1 × 10−15 | 1 × 10−19 | 1 × 10−19 |
Reference for the defect energy level Et | Above the highest Ev | Above the highest Ev | Above the highest Ev | Above the highest Ev | Above the highest Ev |
Energy with respect to reference (eV) | 0.6 | 0.1 | 0.6 | 0.6 | 0.6 |
Total density (1/cm3) | 1 × 1014 | 1 × 1018 | 8 × 1014 | 1 × 1014 | 1 × 1015 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Laouid, A.; Alaoui Belghiti, A.; Abouais, A.; Wisniewski, K.; Tlemçani, M.; Płóciennik, P.; Hajjaji, A.; Zawadzka, A. Optimizing Zinc Selenide and Silicon-Based Heterojunction Solar Cells for Enhanced Photovoltaic Performance. Solar 2025, 5, 29. https://doi.org/10.3390/solar5030029
Laouid A, Alaoui Belghiti A, Abouais A, Wisniewski K, Tlemçani M, Płóciennik P, Hajjaji A, Zawadzka A. Optimizing Zinc Selenide and Silicon-Based Heterojunction Solar Cells for Enhanced Photovoltaic Performance. Solar. 2025; 5(3):29. https://doi.org/10.3390/solar5030029
Chicago/Turabian StyleLaouid, Amina, Amine Alaoui Belghiti, Ali Abouais, Krzysztof Wisniewski, Mouhaydine Tlemçani, Przemysław Płóciennik, Abdelowahed Hajjaji, and Anna Zawadzka. 2025. "Optimizing Zinc Selenide and Silicon-Based Heterojunction Solar Cells for Enhanced Photovoltaic Performance" Solar 5, no. 3: 29. https://doi.org/10.3390/solar5030029
APA StyleLaouid, A., Alaoui Belghiti, A., Abouais, A., Wisniewski, K., Tlemçani, M., Płóciennik, P., Hajjaji, A., & Zawadzka, A. (2025). Optimizing Zinc Selenide and Silicon-Based Heterojunction Solar Cells for Enhanced Photovoltaic Performance. Solar, 5(3), 29. https://doi.org/10.3390/solar5030029