Optimization of Inverted All-Inorganic CsPbI3 and CsPbI2Br Perovskite Solar Cells by SCAPS-1D Simulation
Abstract
:1. Introduction
2. Simulation Details
2.1. Electronic Structure Calculations
2.2. Device Simulations
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Burschka, J.; Pellet, N.; Moon, S.-J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin, M.K.; Grätzel, M. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 2013, 499, 316–319. [Google Scholar] [CrossRef] [PubMed]
- Gao, P.; Grätzel, M.; Nazeeruddin, M.K. Organohalide lead perovskites for photovoltaic applications. Energy Environ. Sci. 2014, 7, 2448–2463. [Google Scholar] [CrossRef]
- Salah, M.M.; Abouelatta, M.; Shaker, A.; Hassan, K.M.; Saeed, A. A comprehensive simulation study of hybrid halide perovskite solar cell with copper oxide as HTM. Semicond. Sci. Technol. 2019, 34, 115009. [Google Scholar] [CrossRef]
- Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. J. Am. Chem. Soc. 2009, 131, 6050–6051. [Google Scholar] [CrossRef]
- NREL, 2022. Best Research-Cell Efficiency Chart. Available online: https://www.nrel.gov/pv/cell-efficiency.html. (accessed on 27 November 2022).
- Zhao, P.; Su, J.; Lin, Z.; Wang, J.; Zhang, J.; Hao, Y.; Ouyang, X.; Chang, J. All-Inorganic CsPbIxBr3−x Perovskite Solar Cells: Crystal Anisotropy Effect. Adv. Theory Simul. 2020, 3, 2000055. [Google Scholar] [CrossRef]
- Chen, L.; Wan, L.; Li, X.; Zhang, W.; Fu, S.; Wang, Y.; Li, S.; Wang, H.-Q.; Song, W.; Fang, J. Inverted All-Inorganic CsPbI2Br Perovskite Solar Cells with Promoted Efficiency and Stability by Nickel Incorporation. Chem. Mater. 2019, 31, 9032–9039. [Google Scholar] [CrossRef]
- Conings, B.; Drijkoningen, J.; Gauquelin, N.; Babayigit, A.; D’Haen, J.; D’Olieslaeger, L.; Ethirajan, A.; Verbeeck, J.; Manca, J.; Mosconi, E.; et al. Intrinsic Thermal Instability of Methylammonium Lead Trihalide Perovskite. Adv. Energy Mater. 2015, 5, 1500477. [Google Scholar] [CrossRef]
- Qiu, Z.; Li, N.; Huang, Z.; Chen, Q.; Zhou, H. Recent Advances in Improving Phase Stability of Perovskite Solar Cells. Small Methods 2020, 4, 1900877. [Google Scholar] [CrossRef]
- Han, Q.; Bae, S.; Sun, P.; Hsieh, Y.; Yang, Y.; Rim, Y.S.; Zhao, H.; Chen, Q.; Shi, W.; Li, G. Single Crystal Formamidinium Lead Iodide (FAPbI3): Insight into the Structural, Optical, and Electrical Properties. Adv. Mater. 2016, 28, 2253–2258. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, L.; Li, Y.; Zhou, X.; She, S.; Wang, X.; Tian, Y.; Jen, A.K.Y.; Xu, B. Highly Stable and Efficient Perovskite Solar Cells with 22.0% Efficiency Based on Inorganic–Organic Dopant-Free Double Hole Transporting Layers. Adv. Funct. Mater. 2020, 30, 2000967. [Google Scholar] [CrossRef]
- Liu, C.; Li, W.; Zhang, C.; Ma, Y.; Fan, J.; Mai, Y. All-Inorganic CsPbI2Br Perovskite Solar Cells with High Efficiency Exceeding 13%. J. Am. Chem. Soc. 2018, 140, 3825–3828. [Google Scholar] [CrossRef] [PubMed]
- Sutton, R.J.; Eperon, G.E.; Miranda, L.; Parrott, E.S.; Kamino, B.A.; Patel, J.B.; Hörantner, M.T.; Johnston, M.B.; Haghighirad, A.A.; Moore, D.T.; et al. Bandgap-Tunable Cesium Lead Halide Perovskites with High Thermal Stability for Efficient Solar Cells. Adv. Energy Mater. 2016, 6, 1502458. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, J.; Zhou, Y.; Liu, H.; Xue, Q.; Li, X.; Chueh, C.C.; Yip, H.L.; Zhu, Z.; Jen, A.K. Highly efficient all-inorganic perovskite solar cells with suppressed non-radiative recombination by a Lewis base. Nat. Commun. 2020, 11, 177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, Y.; Yuan, J.; Ni, Y.; Yang, J.; Wang, Y.; Jiu, T.; Yuan, M.; Chen, J. Reduced-Dimensional α-CsPbX3 Perovskites for Efficient and Stable Photovoltaics. Joule 2018, 2, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Zhang, Y.; Fu, L.; Yu, T.; Zhou, S.; Zhang, L.; Yin, L. Surface passivation engineering strategy to fully-inorganic cubic CsPbI3 perovskites for high-performance solar cells. Nat. Commun. 2018, 9, 1076. [Google Scholar] [CrossRef] [Green Version]
- Tian, J.; Xue, Q.; Tang, X.; Chen, Y.; Li, N.; Hu, Z.; Shi, T.; Wang, X.; Huang, F.; Brabec, C.J.; et al. Dual Interfacial Design for Efficient CsPbI2 Br Perovskite Solar Cells with Improved Photostability. Adv. Mater. 2019, 31, 1901152. [Google Scholar] [CrossRef]
- Tao, S.; Schmidt, I.; Brocks, G.; Jiang, J.; Tranca, I.; Meerholz, K.; Olthof, S. Absolute energy level positions in tin- and lead-based halide perovskites. Nat. Commun. 2019, 10, 2560. [Google Scholar] [CrossRef] [Green Version]
- Lau, C.F.J.; Wang, Z.; Sakai, N.; Zheng, J.; Liao, C.H.; Green, M.; Huang, S.; Snaith, H.J.; Ho-Baillie, A. Fabrication of Efficient and Stable CsPbI 3 Perovskite Solar Cells through Cation Exchange Process. Adv. Energy Mater. 2019, 9, 1901685. [Google Scholar] [CrossRef]
- Gan, Y.; Zhao, D.; Qin, B.; Bi, X.; Liu, Y.; Ning, W.; Yang, R.; Jiang, Q. Numerical Simulation of High-Performance CsPbI3/FAPbI3 Heterojunction Perovskite Solar Cells. Energies 2022, 15, 7301. [Google Scholar] [CrossRef]
- Chen, W.; Zhang, J.; Xu, G.; Xue, R.; Li, Y.; Zhou, Y.; Hou, J.; Li, Y. A Semitransparent Inorganic Perovskite Film for Overcoming Ultraviolet Light Instability of Organic Solar Cells and Achieving 14.03% Efficiency. Adv. Mater. 2018, 30, e1800855. [Google Scholar] [CrossRef]
- Liu, S.; Chen, W.; Shen, Y.; Wang, S.; Zhang, M.; Li, Y.; Li, Y. An intermeshing electron transporting layer for efficient and stable CsPbI2Br perovskite solar cells with open circuit voltage over 1.3 V. J. Mater. Chem. A 2020, 8, 14555–14565. [Google Scholar] [CrossRef]
- Ho-Baillie, A.; Zhang, M.; Lau, C.F.J.; Ma, F.-J.; Huang, S. Untapped Potentials of Inorganic Metal Halide Perovskite Solar Cells. Joule 2019, 3, 938–955. [Google Scholar] [CrossRef] [Green Version]
- Eperon, G.E.; Paterno, G.M.; Sutton, R.J.; Zampetti, A.; Haghighirad, A.A.; Cacialli, F.; Snaith, H.J. Inorganic caesium lead iodide perovskite solar cells. J. Mater. Chem. A 2015, 3, 19688–19695. [Google Scholar] [CrossRef]
- Che, Y.; Liu, Z.; Duan, Y.; Wang, J.; Yang, S.; Xu, D.; Xiang, W.; Wang, T.; Yuan, N.; Ding, J.; et al. Hydrazide Derivatives for Defect Passivation in Pure CsPbI 3 Perovskite Solar Cells. Angew. Chem. Int. Ed. 2022, 61, 202205012. [Google Scholar] [CrossRef] [PubMed]
- Tan, S.; Yu, B.; Cui, Y.; Meng, F.; Huang, C.; Li, Y.; Chen, Z.; Wu, H.; Shi, J.; Luo, Y.; et al. Temperature-Reliable Low-Dimensional Perovskites Passivated Black-Phase CsPbI 3 toward Stable and Efficient Photovoltaics. Angew. Chem. 2022, 61, 202201300. [Google Scholar] [CrossRef]
- Liu, X.; Lian, H.; Zhou, Z.; Zou, C.; Xie, J.; Zhang, F.; Yuan, H.; Yang, S.; Hou, Y.; Yang, H.G. Stoichiometric Dissolution of Defective CsPbI 2 Br Surfaces for Inorganic Solar Cells with 17.5% Efficiency. Adv. Energy Mater. 2022, 12, 2103933. [Google Scholar] [CrossRef]
- Duan, C.; Wen, Q.; Fan, Y.; Li, J.; Liu, Z.; Yan, K. Improving the stability and scalability of all-inorganic inverted CsPbI2Br perovskite solar cell. J. Energy Chem. 2022, 68, 176–183. [Google Scholar] [CrossRef]
- Wang, K.; Su, Z.; Chen, Y.; Qi, H.; Wang, T.; Wang, H.; Zhang, Y.; Cao, L.; Ye, Q.; Huang, F.; et al. Dual bulk and interface engineering with ionic liquid for enhanced performance of ambient-processed inverted CsPbI3 perovskite solar cells. J. Mater. Sci. Technol. 2022, 114, 165–171. [Google Scholar] [CrossRef]
- Li, T.; Wu, Y.; Liu, Z.; Yang, Y.; Luo, H.; Li, L.; Chen, P.; Gao, X.; Tan, H. Cesium acetate-assisted crystallization for high-performance inverted CsPbI3 perovskite solar cells. Nanotechnology 2022, 33, 375205. [Google Scholar] [CrossRef]
- Li, X.; Zhang, W.; Guo, X.; Lu, C.; Wei, J.; Fang, J. Constructing heterojunctions by surface sulfidation for efficient inverted perovskite solar cells. Science 2022, 375, 434–437. [Google Scholar] [CrossRef]
- Chen, L.; Yin, Z.; Mei, S.; Xiao, X.; Wang, H.-Q. Enhanced photoelectric performance of inverted CsPbI2Br perovskite solar cells with zwitterion modified ZnO cathode interlayer. J. Power Sources 2021, 499, 229909. [Google Scholar] [CrossRef]
- Fu, S.; Sun, N.; Le, J.; Zhang, W.; Miao, R.; Zhang, W.; Kuang, Y.; Song, W.; Fang, J. Tailoring Defects Regulation in Air-Fabricated CsPbI3 for Efficient Inverted All-Inorganic Perovskite Solar Cells with Voc of 1.225 V. ACS Appl. Mater. Interfaces 2022, 14, 30937–30945. [Google Scholar] [CrossRef] [PubMed]
- Martin, R.M. Electronic Structure: Basic Theory and Practical Methods; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Madsen, G.K.H.; Blaha, P.; Schwarz, K.; Sjöstedt, E.; Nordström, L. Efficient linearization of the augmented plane-wave method. Phys. Rev. B 2001, 64, 195134. [Google Scholar] [CrossRef]
- Blaha, P.; Schwarz, K.; Madsen, G.; Kvasnicka, D.; Luitz, J. WIEN2k: An Augmented Plan Wave Plus Local Orbitals Program for Calculating Crystal Properties; Vienna University of Technology: Vienna, Austria, 2014. [Google Scholar]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heyd, J.; Scuseria, G.E.; Ernzerhof, M. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 2003, 118, 8207–8215, Erratum in J. Chem. Phys. 2006, 124, 219906. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.; Novendra, N.; Navrotsky, A. Energetics, Structures, and Phase Transitions of Cubic and Orthorhombic Cesium Lead Iodide (CsPbI3) Polymorphs. J. Am. Chem. Soc. 2019, 141, 14501–14504. [Google Scholar] [CrossRef]
- Trots, D.M.; Myagkota, S.V. High-temperature structural evolution of caesium rubidium triiodoplumbates. J. Phys. Chem. Solids 2008, 69, 2520–2526. [Google Scholar] [CrossRef] [Green Version]
- Beal, R.E.; Slotcavage, D.J.; Leijtens, T.; Bowring, A.R.; Belisle, R.A.; Nguyen, W.H.; Burkhard, G.F.; Hoke, E.T.; McGehee, M.D. Cesium Lead Halide Perovskites with Improved Stability for Tandem Solar Cells. J. Phys. Chem. Lett. 2016, 7, 746–751. [Google Scholar] [CrossRef]
- Swarnkar, A.; Marshall, A.R.; Sanehira, E.M.; Chernomordik, B.D.; Moore, D.T.; Christians, J.A.; Chakrabarti, T.; Luther, J.M. Quantum dot–induced phase stabilization of α-CsPbI 3 perovskite for high-efficiency photovoltaics. Science 2016, 354, 92–95. [Google Scholar] [CrossRef] [Green Version]
- Paul, T.; Chatterjee, B.K.; Maiti, S.; Sarkar, S.; Besra, N.; Das, B.K.; Panigrahi, K.J.; Thakur, S.; Ghorai, U.K.; Chattopadhyay, K.K. Tunable cathodoluminescence over the entire visible window from all-inorganic perovskite CsPbX3 1D architecture. J. Mater. Chem. C 2018, 6, 3322–3333. [Google Scholar] [CrossRef]
- He, M.; Ding, L.; Liu, S.; Shao, G.; Zhang, Z.; Liang, X.; Xiang, W. Superior fluorescence and high stability of B-Si-Zn glasses based on Mn-doped CsPbBrxI3-x nanocrystals. J. Alloys Compd. 2019, 780, 318–325. [Google Scholar] [CrossRef]
- Zhuang, J.; Wei, Y.; Luan, Y.; Chen, N.; Mao, P.; Cao, S.; Wang, J. Band engineering at the interface of all-inorganic CsPbI2Br solar cells. Nanoscale 2019, 11, 14553–14560. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, D.; Ali, Y.; Chaudhary, D.K.; Bhattacharyya, S. Dependence of halide composition on the stability of highly efficient all-inorganic cesium lead halide perovskite quantum dot solar cells. Sol. Energy Mater. Sol. Cells 2018, 185, 28–35. [Google Scholar] [CrossRef]
- Burgelman, M.; Nollet, P.; Degrave, S. Modelling polycrystalline semiconductor solar cells. Thin Solid Films 2000, 361–362, 527–532. [Google Scholar] [CrossRef]
- Adhikari, K.R.; Gurung, S.; Bhattarai, B.K.; Soucase, B.M. Comparative study on MAPbI 3 based solar cells using different electron transporting materials. Phys. Status Solidi 2016, 13, 13–17. [Google Scholar] [CrossRef]
- Chakraborty, K.; Choudhury, M.G.; Paul, S. Numerical study of Cs2TiX6 (X = Br−, I−, F− and Cl−) based perovskite solar cell using SCAPS-1D device simulation. Sol. Energy 2019, 194, 886–892. [Google Scholar] [CrossRef]
- Tahiri, O.; Kassou, S.; Ettakni, M.; Belaaraj, A. Simulation studies of lead-free Mn-based 2D perovskite solar cells. Semicond. Sci. Technol. 2021, 36, 095043. [Google Scholar] [CrossRef]
- Lin, L.; Jiang, L.; Li, P.; Xiong, H.; Kang, Z.; Fan, B.; Qiu, Y. Simulated development and optimized performance of CsPbI3 based all-inorganic perovskite solar cells. Sol. Energy 2020, 198, 454–460. [Google Scholar] [CrossRef]
- Casas, G.; Cappelletti, M.; Cédola, A.; Soucase, B.M.; Blancá, E.P.Y. Analysis of the power conversion efficiency of perovskite solar cells with different materials as Hole-Transport Layer by numerical simulations. Superlattices Microstruct. 2017, 107, 136–143. [Google Scholar] [CrossRef]
- Son, H.; Jeong, B.-S. Optimization of the Power Conversion Efficiency of CsPbIxBr3−x-Based Perovskite Photovoltaic Solar Cells Using ZnO and NiOx as an Inorganic Charge Transport Layer. Appl. Sci. 2022, 12, 8987. [Google Scholar] [CrossRef]
- Azri, F.; Meftah, A.; Sengouga, N.; Meftah, A. Electron and hole transport layers optimization by numerical simulation of a perovskite solar cell. Sol. Energy 2019, 181, 372–378. [Google Scholar] [CrossRef]
- Deng, Q.; Li, Y.; Chen, L.; Wang, S.; Wang, G.; Sheng, Y.; Shao, G. The effects of electron and hole transport layer with the electrode work function on perovskite solar cells. Mod. Phys. Lett. B 2016, 30. [Google Scholar] [CrossRef]
- Hossain, M.I.; Alharbi, F.H.; Tabet, N. Copper oxide as inorganic hole transport material for lead halide perovskite based solar cells. Sol. Energy 2015, 120, 370–380. [Google Scholar] [CrossRef]
- Nama Manjunatha, K.; Paul, S. Investigation of optical properties of nickel oxide thin films deposited on different substrates. Appl. Surf. Sci. 2015, 352, 10–15. [Google Scholar] [CrossRef]
- Behrouznejad, F.; Shahbazi, S.; Taghavinia, N.; Wu, H.-P.; Diau, E.W.-G. A study on utilizing different metals as the back contact of CH3NH3PbI3 perovskite solar cells. J. Mater. Chem. A 2016, 4, 13488–13498. [Google Scholar] [CrossRef]
- Shao, S.; Loi, M.A. The Role of the Interfaces in Perovskite Solar Cells. Adv. Mater. Interfaces 2020, 7, 1901469. [Google Scholar] [CrossRef]
Parameters | CsPbI3 | CsPbI2Br |
---|---|---|
Thickness (nm) | 350 | 350 |
NA (cm−3) | 1 × 1015 | 1 × 1015 |
ND (cm−3) | - | - |
εr | 6 | 8.6 |
Ӽ (eV) | 3.49 | 3.73 |
EG (eV) | 1.78 | 1.88 |
μn (cm2V−1s−1) | 16 | 25 |
μp (cm2V−1s−1) | 16 | 25 |
NT (cm−3) | 2.07 × 1014 | 3.6 × 1016 |
NC (cm−3) | 1.61 × 1019 | 1.90 × 1019 |
NV (cm−3) | 2.21 × 1018 | 2.37 × 1018 |
Parameters | NiO | Cu2O | CuSCN | CuI |
---|---|---|---|---|
Thickness (nm) | 25 | 25 | 25 | 25 |
NA (cm−3) | 3 × 1018 | 3 × 1018 | 3 × 1018 | 3 × 1018 |
ND (cm−3) | - | - | - | - |
εr | 11.7 | 7.11 | 10 | 6.5 |
Ӽ (eV) | 1.46 | 3.2 | 1.9 | 2.1 |
EG (eV) | 3.8 | 2.17 | 3.4 | 3.1 |
μn (cm2V−1s−1) | 2.8 | 200 | 2 × 10−4 | 100 |
μp (cm2V−1s−1) | 2.8 | 80 | 2 × 10−1 | 44 |
NT (cm−3) | 1 × 1017 | 1 × 1017 | 1 × 1017 | 1 × 1017 |
NC (cm−3) | 2.5 × 1020 | 2.5 × 1020 | 1.7 × 1019 | 2.8 × 1019 |
NV (cm−3) | 2.5 × 1020 | 2.5 × 1020 | 2.5 × 1021 | 1 × 1019 |
Parameters | ZnO | TiO2 | SnO2 |
---|---|---|---|
Thickness (nm) | 25 | 25 | 25 |
NA (cm−3) | - | - | - |
ND (cm−3) | 3 × 1018 | 3 × 1018 | 3 × 1018 |
εr | 9 | 9 | 9 |
Ӽ (eV) | 4 | 4 | 4 |
EG (eV) | 3.16 | 3.2 | 3.5 |
μn (cm2V−1s−1) | 100 | 20 | 20 |
μp (cm2V−1s−1) | 25 | 10 | 10 |
NT (cm−3) | 1 × 1017 | 1 × 1017 | 1 × 1017 |
NC (cm−3) | 4.5 × 1018 | 1 × 1021 | 4.36 × 1018 |
NV (cm−3) | 1 × 1018 | 2 × 1020 | 2.52 × 1019 |
i-ETL/i-HTL | PCE (%) | VOC (V) | JSC (mA/cm2) | FF (%) | ||||
---|---|---|---|---|---|---|---|---|
CsPbI2Br | CsPbI3 | CsPbI2Br | CsPbI3 | CsPbI2Br | CsPbI3 | CsPbI2Br | CsPbI3 | |
ZnO/NiO | 12.32 | 14.03 | 0.91 | 1.29 | 16.13 | 13.44 | 84.42 | 81.15 |
SnO2/NiO | 12.31 | 14.02 | 0.91 | 1.29 | 16.12 | 13.43 | 84.41 | 81.20 |
TiO2/NiO | 12.19 | 12.28 | 0.91 | 1.29 | 16.13 | 13.43 | 82.97 | 71.16 |
ZnO/Cu2O | 11.03 | 12.99 | 0.90 | 1.28 | 15.33 | 12.89 | 79.90 | 78.86 |
SnO2/Cu2O | 11.02 | 12.97 | 0.90 | 1.28 | 15.32 | 12.87 | 79.89 | 78.89 |
TiO2/Cu2O | 10.81 | 11.42 | 0.90 | 1.28 | 15.33 | 12.87 | 78.72 | 69.32 |
ZnO/CuSCN | 11.89 | 13.65 | 0.91 | 1.29 | 16.10 | 13.45 | 81.58 | 78.54 |
SnO2/CuSCN | 11.88 | 13.56 | 0.91 | 1.29 | 16.09 | 13.43 | 81.57 | 78.42 |
TiO2/CuSCN | 11.81 | 11.96 | 0.90 | 1.28 | 16.11 | 13.43 | 81.66 | 69.34 |
ZnO/CuI | 12.35 | 14.13 | 0.91 | 1.29 | 16.06 | 13.46 | 84.90 | 81.51 |
SnO2/CuI | 12.34 | 14.11 | 0.91 | 1.29 | 16.05 | 13.45 | 84.89 | 81.55 |
TiO2/CuI | 12.23 | 12.42 | 0.90 | 1.29 | 16.07 | 13.45 | 84.56 | 71.73 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pinzón, C.; Martínez, N.; Casas, G.; Alvira, F.C.; Denon, N.; Brusasco, G.; Medina Chanduví, H.; Gil Rebaza, A.V.; Cappelletti, M.A. Optimization of Inverted All-Inorganic CsPbI3 and CsPbI2Br Perovskite Solar Cells by SCAPS-1D Simulation. Solar 2022, 2, 559-571. https://doi.org/10.3390/solar2040033
Pinzón C, Martínez N, Casas G, Alvira FC, Denon N, Brusasco G, Medina Chanduví H, Gil Rebaza AV, Cappelletti MA. Optimization of Inverted All-Inorganic CsPbI3 and CsPbI2Br Perovskite Solar Cells by SCAPS-1D Simulation. Solar. 2022; 2(4):559-571. https://doi.org/10.3390/solar2040033
Chicago/Turabian StylePinzón, Carlos, Nahuel Martínez, Guillermo Casas, Fernando C. Alvira, Nicole Denon, Gastón Brusasco, Hugo Medina Chanduví, Arles V. Gil Rebaza, and Marcelo A. Cappelletti. 2022. "Optimization of Inverted All-Inorganic CsPbI3 and CsPbI2Br Perovskite Solar Cells by SCAPS-1D Simulation" Solar 2, no. 4: 559-571. https://doi.org/10.3390/solar2040033
APA StylePinzón, C., Martínez, N., Casas, G., Alvira, F. C., Denon, N., Brusasco, G., Medina Chanduví, H., Gil Rebaza, A. V., & Cappelletti, M. A. (2022). Optimization of Inverted All-Inorganic CsPbI3 and CsPbI2Br Perovskite Solar Cells by SCAPS-1D Simulation. Solar, 2(4), 559-571. https://doi.org/10.3390/solar2040033