Scalable Screen-Printed TiO2 Compact Layers for Fully Printable Carbon-Based Perovskite Solar Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Fabrication of TiO2 Compact Layers
2.3. Device Fabrication
2.4. Characterization Techniques
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, Y. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 2009, 131, 6050–6051. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.M.; Teuscher, J.; Miyasaka, T.; Murakami, T.N.; Snaith, H.J. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 2012, 338, 643–647. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, W.S.; Noh, J.H.; Jeon, N.J.; Kim, Y.C.; Ryu, S.; Seo, J.; Seok, S.I. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 2015, 348, 1234–1237. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.; Yu, Y.; Wang, C.; Liao, W.; Shrestha, N.; Grice, C.R.; Climaroli, A.J.; Guan, L.; Ellingson, R.J.; Zhu, K.; et al. Low-bandgap mixed tin–lead iodide perovskite absorbers with long carrier lifetimes for all-perovskite tandem solar cells. Nat. Energy 2017, 2, 17018. [Google Scholar] [CrossRef]
- Yang, W.S.; Park, B.W.; Jung, E.H.; Jeon, N.J.; Kim, Y.C.; Lee, D.U.; Shin, S.S.; Seo, J.; Kim, E.K.; Noh, J.H.; et al. Iodide management in formamidinium-lead-halidebased perovskite layers for efficient solar cells. Science 2017, 356, 1376–1379. [Google Scholar] [CrossRef] [Green Version]
- Best Research-Cell Efficiency Chart, Photovoltaic Research, NREL. Available online: https://www.nrel.gov/pv/cell-efficiency.html (accessed on 24 January 2021).
- Snaith, H.J. Present status and future prospects of perovskite photovoltaics. Nat. Mater. 2018, 17, 372–376. [Google Scholar] [CrossRef]
- Zhang, M.; Lyu, M.; Yu, H.; Yun, J.; Wang, Q.; Wang, L. Stable and low-cost mesoscopic CH3NH3PbI2Br perovskite solar cells by using a thin poly(3-hexylthiophene) layer as a hole transporter. Chem. Eur. J. 2015, 21, 434–439. [Google Scholar] [CrossRef]
- Baker, J.A.; Mouhamad, Y.; Hooper, K.; Burkitt, D.; Geoghegan, M.; Watson, T.M. From spin coating to roll-to-roll: Investigating the challenge of upscaling lead halide perovskite solar cells. IET Renew. Power Gener. 2017, 11, 546–549. [Google Scholar] [CrossRef] [Green Version]
- Ku, Z.; Rong, Y.; Xu, M.; Liu, T.; Han, H. Full Printable Processed Mesoscopic CH3NH3PbI3/TiO2 Heterojunction Solar Cells with Carbon Counter Electrode. Sci. Rep. 2013, 3, 3132. [Google Scholar] [CrossRef] [Green Version]
- Meroni, S.M.P.; Mouhamad, Y.; De Rossi, F.; Pockett, A.; Baker, J.; Escalante, R.; Searle, J.; Carnie, M.J.; Jewell, E.; Oskam, G.; et al. Homogeneous and highly controlled deposition of low viscosity inks and application on fully printable perovskite solar cells. Sci. Technol. Adv. Mater. 2018, 19, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Mei, A.; Li, X.; Liu, L.; Ku, Z.; Liu, T.; Rong, Y.; Xu, M.; Hu, M.; Chen, J.; Yang, Y.; et al. A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability. Science 2014, 345, 295–298. [Google Scholar] [CrossRef] [PubMed]
- Grancini, G.; Carmona, C.R.; Zimmermann, I.; Mosconi, E.; Lee, X.; Martineau, D.; Narbey, S.; Oswald, F.; De Angelis, F.; Graetzel, M.; et al. One-Year stable perovskite solar cells by 2D/3D interface engineering. Nat. Commun. 2017, 8, 15684. [Google Scholar] [CrossRef] [PubMed]
- Mei, A.; Sheng, Y.; Ming, Y.; Hu, Y.; Rong, Y.; Zhang, W.; Luo, S.; Na, G.; Tian, C.; Hou, X.; et al. Stabilizing Perovskite Solar Cells to IEC61215:2016 Standards with over 9,000-h Operational Tracking. Joule 2020, 4, 2646–2660. [Google Scholar] [CrossRef]
- Chen, H.; Yang, S. Carbon-based perovskite solar cells without hole transport materials: The front runner to the market? Adv. Mater. 2017, 29, 1603994. [Google Scholar] [CrossRef]
- Meroni, S.M.P.; Worsley, C.; Raptis, D.; Watson, T.M. Triple-Mesoscopic Carbon Perovskite Solar Cells: Materials, Processing and Applications. Energies 2021, 14, 386. [Google Scholar] [CrossRef]
- Tao, R.; Fang, W.; Li, F.; Sun, Z.; Xu, L. Lanthanide-containing polyoxometalate as luminescent down-conversion material for improved printable perovskite solar cells. J. Alloys Compd. 2020, 823, 153738. [Google Scholar] [CrossRef]
- Liu, T.; Xiong, Y.; Mei, A.; Hu, Y.; Rong, Y.; Xu, M.; Wang, Z.; Lou, L.; Du, D.; Zheng, S.; et al. Spacer layer design for efficient fully printable mesoscopic perovskite solar cells. RSC Adv. 2019, 9, 29840–29846. [Google Scholar] [CrossRef] [Green Version]
- Mathiazhagan, G.; Wagner, L.; Bogati, S.; Ünal, K.Y.; Bogachuk, D.; Kroyer, T.; Mastroianni, S.; Hinsch, A. Double-Mesoscopic Hole-Transport-Material-Free Perovskite Solar Cells: Overcoming Charge-Transport Limitation by Sputtered Ultrathin Al2O3 Isolating Layer. ACS Appl. Nano Mater. 2020, 3, 2463–2471G. [Google Scholar] [CrossRef]
- Raptis, D.; Stoichkov, V.; Meroni, S.M.; Pockett, A.; Worsley, C.A.; Carnie, M.; Worsley, D.A.; Watson, T.M. Enhancing fully printable mesoscopic perovskite solar cell performance using integrated metallic grids to improve carbon electrode conductivity. Curr. Appl. Phys. 2020, 20, 619–627. [Google Scholar] [CrossRef]
- Tian, C.; Mei, A.; Zhang, S.; Tian, H.; Liu, S.; Qin, F.; Xiong, Y.; Rong, Y.; Hu, Y.; Zhou, Y.; et al. Oxygen management in carbon electrode for high-performance printable perovskite solar cells. Nano Energy 2018, 53, 160–167. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, H.; Williams, S.T.; Xiong, D.; Zhang, W.; Chueh, C.C.; Chen, W.; Jen, A.K.Y. SrCl2 derived perovskite facilitating a high efficiency of 16% in holeconductor-free fully printable mesoscopic perovskite solar cells. Adv. Mater. 2017, 29, 1606608. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Xia, Y.; Huang, Q.; Li, Z.; Mei, A.; Hu, A.; Wang, T.; Cheacharoen, R.; Rong, Y.; Han, H. Tailoring the Dimensionality of Hybrid Perovskites in Mesoporous Carbon Electrodes for Type-II Band Alignment and Enhanced Performance of Printable Hole-Conductor-Free Perovskite Solar Cells. Adv. Energy Mater. 2021, 11, 2100292. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, D.; Shenga, Y.; Zhang, W.; Qin, Z.; Qin, M.; Li, S.; Wang, Y.; Gao, C.; Wang, Q.; et al. Highly oriented MAPbI3 crystals for efficient hole-conductor-free printable mesoscopic perovskite solar cells. Fundam. Res. 2021, 2, 276–283. [Google Scholar] [CrossRef]
- Priyadarshi, A.; Haur, L.J.; Murray, P.; Fu, D.; Kulkarni, S.; Xing, G.; Sum, T.C.; Mathews, N.; Mhaisalkar, S.G. A large area (70 cm2) monolithic perovskite solar module with a high efficiency and stability. Energy Environ. Sci. 2016, 9, 3687–3692. [Google Scholar] [CrossRef]
- Hu, Y.; Si, S.; Mei, A.; Rong, Y.; Liu, H.; Li, X.; Han, H. Stable Large-Area (10 × 10 cm2) Printable Mesoscopic Perovskite Module Exceeding 10% Efficiency. Sol. RRL 2017, 1, 1600019. [Google Scholar] [CrossRef]
- De Rossi, F.; Baker, J.; Beynon, D.; Hooper, K.E.A.; Meroni, S.M.P.; Williams, D.; Wei, Z.; Yasin, A.; Charbonneau, C.; Jewell, E.H.; et al. All Printable Perovskite Solar Modules with 198 cm2 Active Area and Over 6% Efficiency. Adv. Mater. Technol. 2018, 3, 1800156. [Google Scholar] [CrossRef] [Green Version]
- Worsley, C.; Raptis, D.; Meroni, S.; Patidar, R.; Pockett, A.; Dunlop, T.; Potts, S.; Bolton, R.; Charbonneau, C.; Carnie, M.; et al. Green solvent engineering for enhanced performance and reproducibility in printed carbon-based mesoscopic perovskite solar cells and modules. Mater. Adv. 2022, 3, 1125–1138. [Google Scholar] [CrossRef]
- Liu, D.; Kelly, T.L. Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nat. Photonics 2013, 8, 133–138. [Google Scholar] [CrossRef]
- Burschka, J.; Pellet, N.; Moon, S.J.; Baker, R.H.; Gao, P.; Nazeeruddin, M.K.; Gratzel, M. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 2013, 499, 316–319. [Google Scholar] [CrossRef]
- Liu, M.Z.; Johnston, M.B.; Snaith, H.J. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 2013, 501, 395–398. [Google Scholar] [CrossRef]
- Liu, J.; Wang, G.; Luo, K.; He, X.; Ye, Q.; Liao, C.; Mei, J. Understanding the role of the electron-transport layer in highly efficient planar perovskite solar cells. Chem. Phys. Chem. 2017, 18, 617–625. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Lei, L.; Yang, S.; Li, X.; Liu, Y.; Gao, Q.; Gao, X.; Cao, Q.; Yu, Y. Influence of TiO2 blocking layer morphology on planar heterojunction perovskite solar cells. Chem. Lett. 2016, 45, 592–594. [Google Scholar] [CrossRef]
- Mohamad Noh, M.F.; Teh, C.H.; Daik, R.; Lim, E.L.; Yap, C.C.; Ibrahim, M.A.; Ludin, N.A.; Mohd Yusoff, A.R.; Jang, J.; Mat Teridi, M.A. The architecture of the electron transport layer for a perovskite solar cell. J. Mater. Chem. C 2018, 6, 682–712. [Google Scholar] [CrossRef]
- Rong, Y.; Huawei, L.; Ravishankar, S.; Liu, H.; Hou, X.; Sheng, Y.; Mei, A.; Wang, Q.; Li, D.; Xu, M.; et al. Tunable hysteresis effect for perovskite solar cells. Energy Environ. Sci. 2017, 10, 2383–2391. [Google Scholar] [CrossRef]
- Lewis, A.; Troughton, J.R.; Smith, B.; McGettrick, J.; Dunlop, T.; De Rossi, F.; Pockett, A.; Spence, M.; Carnie, M.J.; Watson, T.M.; et al. In-depth analysis of defects in TiO2 compact electron transport layers and impact on performance and hysteresis of planar perovskite devices at low light. Sol. Energy Mater. Sol. Cells 2020, 209, 110448. [Google Scholar] [CrossRef]
- Smith, B.; Troughton, J.; Lewis, A.; McGettrick, J.; Pockett, A.; Carnie, M.; Charbonneau, C.; Pleydell-Pearce, C.; Searle, J.; Warren, P.; et al. Mass Manufactured Glass Substrates Incorporating Prefabricated Electron Transport Layers for Perovskite Solar Cells. Adv. Mater. Interfaces 2019, 6, 1801773. [Google Scholar] [CrossRef]
- Hu, H.; Dong, B.; Hu, H.; Chen, F.; Kong, M.; Zhang, Q.; Luo, T.; Zhao, L.; Guo, Z.; Li, J.; et al. Atomic Layer Deposition of TiO2 for a High-Efficiency Hole-Blocking Layer in Hole-Conductor-Free Perovskite Solar Cells Processed in Ambient Air. ACS Appl. Mater. Interfaces 2016, 8, 17999–18007. [Google Scholar] [CrossRef]
- Zhang, C.; Luo, Y.; Chen, X.; Ou-Yang, W.; Chen, Y.; Sun, Z.; Huang, S. Influence of different TiO2 blocking films on the photovoltaic performance of perovskite solar cells. Appl. Surf. Sci. 2016, 388, 82–88. [Google Scholar] [CrossRef]
- Du, Y.Y.; Cai, H.K.; Wu, Y.H.; Xing, Z.X.; Li, Z.L.; Xu, J.; Huang, L.; Ni, J.; Li, J.; Zhang, J.J. Enhanced planar perovskite solar cells with efficiency exceeding 16% via reducing the oxygen vacancy defect state in titanium oxide electrode. Phys. Chem. Chem. Phys. 2017, 19, 13679–13686. [Google Scholar] [CrossRef]
- Yella, A.; Heiniger, L.P.; Gao, P.; Nazeeruddin, M.K.; Gratzel, M. Nanocrystalline rutile electron extraction layer enables low-temperature solution processed perovskite photovoltaics with 13.7% efficiency. Nano Lett. 2014, 14, 2591–2596. [Google Scholar] [CrossRef]
- Zhou, P.; Wu, J.H.; Tu, Y.G.; Zhen, M.; Huo, J.H.; Wei, Y.L.; Lan, Z. Tin oxide nanosheets as efficient electron transporting materials for perovskite solar cells. Sol. Energy 2016, 137, 579–584. [Google Scholar] [CrossRef]
- Wang, E.; Chen, P.; Yin, X.; Gao, B.; Que, W. Boosting efficiency of planar heterojunction perovskite solar cells by a low temperature TiCl4 treatment. J. Adv. Dielectr. 2018, 8, 18500091. [Google Scholar] [CrossRef] [Green Version]
- Kim, B.; Il So, C.; Guk Ko, S.; Ri, J.H.; Il Ryu, G.; Su Sonu, G. Effects of TiCl4 post-treatment on the performance of hole transport material-free, screen printable mesoscopic perovskite solar cells with carbon electrode. Thin Solid Films 2019, 692, 137627. [Google Scholar] [CrossRef]
- Hvojnika, M.; Popovičová, A.M.; Pavličková, M.; Hatala, M.; Gemeiner, P.; Müllerová, J.; Tomanová, K.; Mikula, M. Solution-processed TiO2 blocking layers in printed carbon-based perovskite solar cells. Appl. Surf. Sci. 2021, 536, 147888. [Google Scholar] [CrossRef]
- Bashir, A.; Shukla, S.; Lew, J.H.; Shukla, S.; Bruno, A.; Gupta, D.; Baikie, T.; Patidar, R.; Akhter, Z.; Priyadarshi, A.; et al. Spinel Co3O4 nanomaterials for efficient and stable large area carbon-based printed perovskite solar cells. Nanoscale 2018, 10, 2341–2350. [Google Scholar] [CrossRef] [PubMed]
- Keremane, K.S.; Prathapani, S.; Jia Haur, L.; Bahulayan, D.; Adhikari, A.V.; Priyadarshi, A.; Subodh, A.; Mhaisalkar, G. Solvent selection for highly reproducible carbon-based mixed-cation hybrid lead halide perovskite solar cells via adduct approach. Sol. Energy 2020, 199, 761–771. [Google Scholar] [CrossRef]
- Troughton, J.; Hooper, K.; Watson, T.M. Humidity resistant fabrication of CH3NH3PbI3 perovskite solar cells and modules. Nano Energy 2017, 39, 60–68. [Google Scholar] [CrossRef] [Green Version]
- Mahé, M.; Heintz, J.M.; Rödel, J.; Reynders, P. Cracking of titania nanocrystalline coatings. J. Eur. Ceram. Soc. 2008, 28, 2003–2010. [Google Scholar] [CrossRef] [Green Version]
- Kavan, L.; Tétreault, N.; Moehl, T.; Grätzel, M. Electrochemical characterization of TiO2 blocking layers for dye-sensitized solar cells. J. Phys. Chem. C 2014, 118, 16408–16418. [Google Scholar] [CrossRef]
- Zimmermann, I.; Gratia, P.; Martineau, D.; Grancini, G.; Audinot, J.N.; Wirtz, T.; Nazeeruddin, M.K. Improved efficiency and reduced hysteresis in ultra-stable fully printable mesoscopic perovskite solar cells through incorporation of CuSCN into the perovskite layer. J. Mater. Chem. A 2019, 7, 8073–8077. [Google Scholar] [CrossRef]
- Worsley, C.; Raptis, D.; Meroni, M.; Doolin, A.; Rodriguez, R.; Davies, M.; Watson, T. γ-Valerolactone: A Nontoxic Green Solvent for Highly Stable Printed Mesoporous Perovskite Solar Cells. Energy Technol. 2021, 9, 2100312. [Google Scholar] [CrossRef]
- Pockett, A.; Raptis, D.; Meroni, S.; Baker, J.; Watson, T.; Carnie, M. Origin of Exceptionally Slow Light Soaking Effect in Mesoporous Carbon Perovskite Solar Cells with AVA Additive. J. Phys. Chem. C 2019, 18, 11414–11421. [Google Scholar] [CrossRef] [Green Version]
Type of C-TiO2 Samples | Nomenclature |
---|---|
Sprayed control samples | C |
Single printing samples | S1 |
Two printing samples | S2 |
Control samples (sprayed) + TiCl4 treatment | C+ |
Single printing samples + TiCl4 treatment | S1+ |
Two printing samples + TiCl4 treatment | S2 |
Device | PCE (%) | Jsc (mA/cm2) | Voc (Volts) | FF (%) |
---|---|---|---|---|
C | 11.72 ± 0.24 | 21.27 ± 0.42 | 0.88 ±0.01 | 62.78 ± 2.71 |
S1 | 11.61 ± 0.37 | 22.39 ± 0.70 | 0.86 ± 0.01 | 60.08 ± 1.71 |
S2 | 9.60 ± 0.20 | 23.03 ± 0.48 | 0.83 ± 0.01 | 50.5 ± 0.99 |
C+ | 12.20 ± 0.18 | 22.85 ± 0.13 | 0.9 ± 0.00 | 59.63 ± 0.76 |
S1+ | 12.87 ± 0.18 | 22.9 ± 0.33 | 0.9 ± 0.00 | 62.52 ± 0.06 |
S2+ | 11.55 ± 0.22 | 22.08 ± 0.13 | 0.9 ± 0.00 | 57.85 ± 0.77 |
Samples | PCE (%) | Jsc (mA/cm2) | Voc (Volts) | FF (%) |
---|---|---|---|---|
C rev. | 11.86 | 20.71 | 0.87 | 65.46 |
C for. | 9.68 | 20.78 | 0.81 | 57.21 |
S1 rev. | 12.14 | 23.77 | 0.86 | 59.19 |
S1 for. | 10.38 | 24.1 | 0.76 | 56.29 |
S2 rev. | 9.8 | 22.55 | 0.84 | 51.48 |
S2 for. | 9.22 | 23.21 | 0.74 | 53.317 |
C+ rev. | 12.48 | 22.72 | 0.9 | 61.12 |
C+ for. | 11.9 | 23.14 | 0.87 | 59.46 |
S1+ rev. | 13.11 | 23.26 | 0.9 | 62.64 |
S1+ for. | 11.61 | 23.6 | 0.82 | 60.09 |
S2+ rev. | 11.96 | 22.32 | 0.9 | 59.38 |
S2+ for. | 11.59 | 22.95 | 0.86 | 58.88 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raptis, D.; Worsley, C.A.; Meroni, S.M.P.; Pockett, A.; Carnie, M.; Watson, T. Scalable Screen-Printed TiO2 Compact Layers for Fully Printable Carbon-Based Perovskite Solar Cells. Solar 2022, 2, 293-304. https://doi.org/10.3390/solar2020016
Raptis D, Worsley CA, Meroni SMP, Pockett A, Carnie M, Watson T. Scalable Screen-Printed TiO2 Compact Layers for Fully Printable Carbon-Based Perovskite Solar Cells. Solar. 2022; 2(2):293-304. https://doi.org/10.3390/solar2020016
Chicago/Turabian StyleRaptis, Dimitrios, Carys A. Worsley, Simone M. P. Meroni, Adam Pockett, Matthew Carnie, and Trystan Watson. 2022. "Scalable Screen-Printed TiO2 Compact Layers for Fully Printable Carbon-Based Perovskite Solar Cells" Solar 2, no. 2: 293-304. https://doi.org/10.3390/solar2020016
APA StyleRaptis, D., Worsley, C. A., Meroni, S. M. P., Pockett, A., Carnie, M., & Watson, T. (2022). Scalable Screen-Printed TiO2 Compact Layers for Fully Printable Carbon-Based Perovskite Solar Cells. Solar, 2(2), 293-304. https://doi.org/10.3390/solar2020016