Macro- and Microelements and Radionuclides in the Mussel Mytilus galloprovincialis from Recreational and Harbor Sites of the Crimean Peninsula (The Black Sea)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Areas and Sampling
2.2. Analysis of the Elements
2.3. Condition Factor
2.4. Statistics
3. Results and Discussion
3.1. Elements in Soft Tissues
3.2. The Elements in the Shells of the Mussels
3.3. Soft Tissues/Shells Ratios
3.4. Natural Radionuclides in Sediments and Mussel Shells
3.5. Enrichment Factors for Mussel Soft Tissues
3.6. Condition Factors
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Haryono, M.G.; Kilawati, Y. Heavy Metal Pb Content in the Seawater, Sediment and Green Mussel Tissue Perna Viridis. J. Ilmu dan Teknol. Kelaut. Trop. 2017, 9, 1–7. [Google Scholar] [CrossRef]
- Abderrahmani, K.; Boulahdid, M.; Bendou, N.; Guenachi, B.; Hacene, O.R.; Masino, F.; Montevecchi, G. Partitioning of trace elements in the tissues of Mediterranean mussels (Mytilus galloprovincialis) sampled from industrial sites along the Algerian coast. Mar. Pollut. Bull. 2021, 173, 113006. [Google Scholar] [CrossRef] [PubMed]
- Mititelu, M.; Neacșu, S.M.; Oprea, E.; Dumitrescu, D.E.; Nedelescu, M.; Drăgănescu, D.; Nicolescu, T.O.; Roșca, A.C.; Ghica, M. Black Sea Mussels Qualitative and Quantitative Chemical Analysis: Nutritional Benefits and Possible Risks through Consumption. Nutrients 2022, 14, 964. [Google Scholar] [CrossRef]
- Arici, E.; Öztekin, A.; Bat, L. Human Health Risk Assessment of Heavy Metals in the Black Sea: Evaluating Mussels. Curr. World Environ. 2018, 13, 15–31. [Google Scholar] [CrossRef]
- Kapranov, S.V.; Karavantseva, N.V.; Bobko, N.I.; Ryabushko, V.I.; Kapranova, L.L. Element contents in three commercially important edible mollusks harvested off the southwestern coast of crimea (Black sea) and assessment of human health risks from their consumption. Foods 2021, 10, 2313. [Google Scholar] [CrossRef]
- Zakharikhina, L.; Rudev, P.; Paltseva, A. Chemical composition and morphology of the Mediterranean mussel, Black Sea coast of Russia. Mar. Pollut. Bull. 2022, 179, 113692. [Google Scholar] [CrossRef] [PubMed]
- Chelyadina, N.S.; Kapranov, S.V.; Popov, M.A.; Smirnova, L.L.; Bobko, N.I. Trace elements in the detoxifying and accumulating body parts of Mytilus galloprovincialis Lamark, 1819 (Crimea, Black Sea): Human health risks and effect of the sampling site location. Environ. Sci. Pollut. Res. 2022, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Pavlov, D.F.; Bezuidenhout, J.; Frontasyeva, M.V.; Goryainova, Z.I. Differences in Trace Element Content between Non-Indigenous Farmed and Invasive Bivalve Mollusks of the South African Coast. Am. J. Anal. Chem. 2015, 06, 886–897. [Google Scholar] [CrossRef]
- Roméo, M.; Frasila, C.; Gnassia-Barelli, M.; Damiens, G.; Micu, D.; Mustata, G. Biomonitoring of trace metals in the Black Sea (Romania) using mussels Mytilus galloprovincialis. Water Res. 2005, 39, 596–604. [Google Scholar] [CrossRef]
- Lobel, P.B.; Bajdik, C.D.; Belkhode, S.P.; Jackson, S.E.; Longerich, H.P. Improved protocol for collecting mussel watch specimens taking into account sex, size, condition, shell shape, and chronological age. Arch. Environ. Contam. Toxicol. 1991, 21, 409–414. [Google Scholar] [CrossRef]
- Zweng, M.M.; Reagan, J.R.; Seidov, D.; Boyer, T.P.; Antonov, J.I.; Locarnini, R.A.; Garcia, H.E.; Mishonov, A.V.; Baranova, O.K.; Weathers, K.W.; et al. World Ocean Atlas 2018 Volume 2: Salinity; A. Mishonov Technical Editor: Silver Spring, MD, USA, 2019; Volume 82. [Google Scholar]
- Goryachkin, Y.N. Upwelling nearby the Crimea Western Coast. Phys. Oceanogr. 2018, 25, 368–379. [Google Scholar] [CrossRef]
- Kholodov, V.I.; Pirkova, A.V.; Ladigina, L. Cultivation of Mussels and Oysters in Black Sea; FAO: Rome, Italy, 2010; ISSN 978-966-02-5551-7. [Google Scholar]
- Greenberg, R.R.; Bode, P.; De Nadai Fernandes, E.A. Neutron activation analysis: A primary method of measurement. Spectrochim. Acta-Part B At. Spectrosc. 2011, 66, 193–241. [Google Scholar] [CrossRef]
- Dmitriev, A.Y.; Pavlov, S.S. Automation of the quantitative determination of elemental content in samples using neutron activation analysis on the IBR-2 reactor at the frank laboratory for neutron physics, joint institute for nuclear research. Phys. Part. Nucl. Lett. 2013, 10, 33–36. [Google Scholar] [CrossRef]
- Nekhoroshkov, P.S.; Bezuidenhout, J.; Frontasyeva, M.V.; Zinicovscaia, I.I.; Yushin, N.S.; Vergel, K.N.; Petrik, L. Trace elements risk assessment for consumption of wild mussels along South Africa coastline. J. Food Compos. Anal. 2021, 98, 103825. [Google Scholar] [CrossRef]
- Nekhoroshkov, P.; Zinicovscaia, I.; Nikolayev, D.; Lychagina, T.; Pakhnevich, A.; Yushin, N.; Bezuidenhout, J. Effect of the elemental content of shells of the bivalve mollusks (Mytilus galloprovincialis) from saldanha bay (south africa) on their crystallographic texture. Biology 2021, 10, 1093. [Google Scholar] [CrossRef]
- Chelyadina, N.S.; Pospelova, N.V.; Popov, M.A. Comparative characteristics of indicesto assess the quality of mussel production by an example of cultivated Mytilus galloprovincialis (Crimea, the Black sea). Turkish J. Fish. Aquat. Sci. 2019, 19, 719–726. [Google Scholar] [CrossRef]
- Jasmin, I.; Murali, T.; Mallikarjuna, P. Statistical Analysis of Groundwater Table Depths in Upper Swarnamukhi River Basin. J. Water Resour. Prot. 2010, 2, 577–584. [Google Scholar] [CrossRef]
- Richir, J.; Gobert, S. The effect of size, weight, body compartment, sex and reproductive status on the bioaccumulation of 19 trace elements in rope-grown Mytilus galloprovincialis. Ecol. Indic. 2014, 36, 33–47. [Google Scholar] [CrossRef]
- Temerdashev, Z.A.; Eletskii, I.I.; Kaunova, A.A.; Korpakova, I.G. Determination of heavy metals in Mytilus galloprovincialis Lamarck mussels using the ICP-AES method. Anal. i Kontrol 2017, 21, 116–124. [Google Scholar] [CrossRef]
- Greggio, N.; Capolupo, M.; Donnini, F.; Birke, M.; Fabbri, E.; Dinelli, E. Integration of physical, geochemical and biological analyses as a strategy for coastal lagoon biomonitoring. Mar. Pollut. Bull. 2021, 164, 112005. [Google Scholar] [CrossRef]
- Bezuidenhout, J.; Nekhoroshkov, P.; Zinicovscaia, I.; Yushin, N.; Frontasyeva, M. Accumulation Features of Micro and Macroelements in Indigenous and Alien Molluscs in Saldanha Bay, South Africa. Ecol. Chem. Eng. S 2020, 27, 495–508. [Google Scholar] [CrossRef]
- Yin, Q.; Wang, W.X. Multiple trace element accumulation in the mussel Septifer virgatus: Counteracting effects of salinity on uptake and elimination. Environ. Pollut. 2018, 242, 375–382. [Google Scholar] [CrossRef] [PubMed]
- Blackmore, G.; Wang, W.-X. Comparison of metal accumulation in mussels at different local and global scales. Environ. Toxicol. Chem. 2003, 22, 388–395. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Velarte, P.; Babarro, J.M.F.; Cobelo-García, A. Bioaccumulation patterns of trace elements by native (M. galloprovincialis) and invasive (X. securis) mussels in coastal systems (Vigo Ria, NW Iberian Peninsula). Mar. Pollut. Bull. 2022, 176, 113463. [Google Scholar] [CrossRef]
- Azizi, G.; Akodad, M.; Layachi, M.; Hmeid, H.A.; Baghour, M.; Gueddari, H.; Riouchi, O.; Moumen, A. Biomonitoring study of trace metals (Al, As, Li) in mussels from Al Hoceima coastline of Moroccan Mediterranean Sea. E3S Web Conf. 2021, 314, 07001. [Google Scholar] [CrossRef]
- Mehouel, F.; Fowler, S.W. Review of the toxic trace elements arsenic, cadmium, lead and mercury in seafood species from Algeria and contiguous waters in the Southwestern Mediterranean Sea. Environ. Sci. Pollut. Res. 2022, 29, 3288–3301. [Google Scholar] [CrossRef]
- Murray, A.B. Coastal Geomorphology: An Introduction. Eos Trans. Am. Geophys. Union 2001, 82, 349. [Google Scholar] [CrossRef]
- Pokazeev, K.; Sovga, E.; Chaplina, T. Modern Methods for Assessing the Self-cleaning Capacity of Marine Ecosystems in Shallow Waters of the Black Sea: Ports, Bays, Estuaries. In Pollution in the Black Sea; Springer: Cham, Switzerland, 2021; pp. 143–178. [Google Scholar]
- Rončević, S.; Svedružić, L.P.; Smetiško, J.; Medaković, D. ICP-AES analysis of metal content in shell of mussel Mytilus galloprovincialis from croatian coastal waters. Int. J. Environ. Anal. Chem. 2010, 90, 620–632. [Google Scholar] [CrossRef]
- Lyubas, A.A.; Tomilova, A.A.; Chupakov, A.V.; Vikhrev, I.V.; Travina, O.V.; Orlov, A.S.; Zubrii, N.A.; Kondakov, A.V.; Bolotov, I.N.; Pokrovsky, O.S. Iron, phosphorus and trace elements in mussels’ shells, water, and bottom sediments from the severnaya dvina and the onega river basins (Northwestern russia). Water 2021, 13, 3227. [Google Scholar] [CrossRef]
- Kiliç, Ö.; Belivermiş, M.; Gözel, F.; Carvalho, F.P. Radioactivity levels in mussels and sediments of the Golden Horn by the Bosphorus Strait, Marmara Sea. Mar. Pollut. Bull. 2014, 86, 555–561. [Google Scholar] [CrossRef]
- Egorov, V.V.N.; Lazorenko, G.E.; Mirzoyeva, N.Y.; Stokozov, N.A.; Kostova, S.K.; Malakhova, L.V.; Pirkova, A.V.; Arkhipova, S.I.; Korkishko, N.F.; Popovichev, V.N.; et al. Content of 137Cs, 40K, 90Sr, 210Po radionuclides and some chemical pollutants in the Black Sea mussels, Mytilus galloprovincialis Lam. Mar. Ecol. J. 2006, 3, 70–78. [Google Scholar]
- Thébault, H.; Rodriguez y Baena, A.M.; Andral, B.; Barisic, D.; Albaladejo, J.B.; Bologa, A.S.; Boudjenoun, R.; Delfanti, R.; Egorov, V.N.; El Khoukhi, T.; et al. 137Cs baseline levels in the Mediterranean and Black Sea: A cross-basin survey of the CIESM Mediterranean Mussel Watch programme. Mar. Pollut. Bull. 2008, 57, 801–806. [Google Scholar] [CrossRef] [PubMed]
- Yuan-Hui, L. Distribution patterns of the elements in the ocean: A synthesis. Geochim. Cosmochim. Acta 1991, 55, 3223–3240. [Google Scholar] [CrossRef]
- Giarratano, E.; Amin, O.A. Heavy metals monitoring in the southernmost mussel farm of the world (Beagle Channel, Argentina). Ecotoxicol. Environ. Saf. 2010, 73, 1378–1384. [Google Scholar] [CrossRef] [PubMed]
- Strohmeier, T.; Duinker, A.; Strand, Ø.; Aure, J. Temporal and spatial variation in food availability and meat ratio in a longline mussel farm (Mytilus edulis). Aquaculture 2008, 276, 83–90. [Google Scholar] [CrossRef] [Green Version]
Station | Origin of the Substrate | Hydrological Character |
---|---|---|
St. 1 (Foros) | Natural rocks | Open to direct waves |
St. 2 (Kamyshovaya bay) | Coastal protection stones | Closed bay |
St. 3 (Sevastopol bay) | Coastal protection stones | Closed bay |
Station | Number (Individuals) | L (mm) | Ws (g) |
---|---|---|---|
St. 1 (Foros) | 40 | 65.6 | 4.1 |
St. 2 (Kamyshovaya bay) | 118 | 46.2 | 1.7 |
St. 3 (Sevastopol bay) | 106 | 51.6 | 1.6 |
SRMs | Concentrations, ppm | Uncertainties, % | Recovery Rates, % | Detection Limits | |||
---|---|---|---|---|---|---|---|
Determined | Certified | Determined | Certified | ppm | |||
Na | 2711a | 12,100 | 12,000 | 8.4 | 0.01 | 100.7 | 50 |
Mg | 1549 | 1000 | 1200 | 7.3 | 2.5 | 82.8 | 50 |
Al | 1632d | 8300 | 9120 | 6.4 | 0.5 | 91.4 | 6.5 |
Cl | 063R | 1050 | 9940 | 7.7 | 3 | 106 | 35 |
K | FFA1 | 21,400 | 22,000 | 10.9 | 30 | 97.2 | 150 |
Ca | 1632d | 1400 | 1440 | 18 | 2.1 | 99.8 | 500 |
Sc | 2711a | 8.47 | 8.5 | 5.5 | 1 | 99.5 | 0.006 |
Ti | 2710a | 3400 | 3110 | 7.1 | 2.3 | 110.1 | 20 |
V | 1633c | 275 | 286 | 4.8 | 2.8 | 96 | 1.5 |
Cr | 667 | 170 | 178 | 7.8 | 9 | 94.7 | 1.5 |
Mn | 1632d | 13.2 | 13.1 | 8.9 | 3.1 | 101.1 | 0.16 |
Fe | 2711a | 27,800 | 28,200 | 5.5 | 0.04 | 98.7 | 20 |
Co | 2711a | 9.7 | 9.89 | 5.7 | 2 | 97.8 | 0.02 |
Ni | 1632c | 9.2 | 9.32 | 10.4 | 5.5 | 98.7 | 0.3 |
Zn | FFA1 | 600 | 569 | 4.1 | 10.2 | 107.9 | 0.4 |
As | FFA1 | 53.9 | 53.6 | 6 | 5 | 100.6 | 0.3 |
Se | FFA1 | 3.8 | 4.6 | 13.3 | 30 | 81.7 | 0.05 |
Br | 1632c | 22.1 | 18.7 | 4.5 | 2.1 | 118.2 | 0.04 |
Rb | 2711a | 120 | 120 | 16.6 | 3 | 103.1 | 0.15 |
Sr | 2711a | 240 | 242 | 9.6 | 4 | 99.7 | 5.5 |
Sb | FFA1 | 18.0 | 17.6 | 8.9 | 14.2 | 102.3 | 0.003 |
I | 1549 | 3.4 | 3.4 | 15.3 | 0.6 | 100 | 0.05 |
Cs | 667 | 7.9 | 7.8 | 6.4 | 9 | 101.2 | 0.003 |
Ba | 2711a | 760 | 730 | 16.1 | 2 | 104.2 | 0.1 |
La | 667 | 28.2 | 27.8 | 8.6 | 3.6 | 101.4 | 0.1 |
Tb | FFA1 | 1.5 | 1.4 | 4.4 | 10.1 | 105.5 | 0.001 |
Ta | 667 | 1.9 | 2.1 | 3.7 | 7.6 | 90.7 | 0.002 |
Th | 2711a | 14.5 | 15 | 5.3 | 7 | 96.9 | 0.01 |
U | 667 | 2.4 | 2.3 | 7.5 | 6.6 | 104.7 | 0.1 |
Present Study | Crimea | Crimea | Tyrrhenian Sea | |||||
---|---|---|---|---|---|---|---|---|
Median | Minimum | Maximum | Std. Dev. | Coef. Var. % | [5] | [21] | [20] | |
Na | 5800 | 2440 | 5900 | 1648 | 35.0 | 11,500 ± 1600 | - | - |
Mg | 1890 | 1300 | 2070 | 310 | 17.7 | 2200 ± 300 | - | - |
Al | 193 | 61 | 228 | 74 | 46.9 | 3000 ± 2200 | - | 39–877 |
Cl | 5700 | 2280 | 6200 | 1759 | 37.9 | - | - | - |
K | 1050 | 550 | 1290 | 252 | 24.1 | 7100 ± 700 | - | - |
Ca | 7000 | 5100 | 7900 | 1148 | 16.9 | 900 ± 120 | - | - |
Sc | 0.13 | 0.09 | 0.21 | 0.04 | 29.9 | 12.0 ± 1.6 | - | - |
Ti | 24 | 11 | 67 | 18 | 57.2 | 96 ± 13 | - | - |
V | 0.9 | 0.6 | 2.4 | 0.8 | 62.3 | 1.14 ± 0.18 | 2.3 ± 0.1 | 2.3–12.5 |
Cr | 1.2 | 1.0 | 2.2 | 0.4 | 28.3 | 2.61 ± 0.34 | 0.48 ± 0.05 | 0.19–2.17 |
Mn | 8.6 | 6.6 | 11.6 | 1.6 | 18.5 | 6.3 ± 1.4 | 6.01 ± 0.09 | 3.4–20.6 |
Fe | 329 | 145 | 430 | 98 | 33.8 | 197 ± 26 | 206 ± 5 | 66–656 |
Co | 1.0 | 0.5 | 1.4 | 0.3 | 35.8 | 0.64 ± 0.11 | - | 0.37–1.37 |
Ni | 2.4 | 2.0 | 3.0 | 0.4 | 16.7 | 5.2 ± 0.8 | 1.36 ± 0.02 | 0.71–3.39 |
Zn | 372 | 358 | 491 | 60 | 14.8 | 308 ± 59 | 106 ± 2 | 35–224 |
As | 14.5 | 13.8 | 21.2 | 3.3 | 20.3 | 15.1 ± 2.6 | 1.86 ± 0.03 | 17–46 |
Se | 1.7 | 1.6 | 2.6 | 0.4 | 22.7 | 8.8 ± 1.1 | - | 1.5–4.3 |
Br | 219 | 144 | 252 | 47 | 22.8 | 61 ± 6 | - | - |
Rb | 0.8 | 0.3 | 1.2 | 0.3 | 36.4 | 3.2 ± 0.3 | - | - |
Sr | 61 | 46 | 79 | 11 | 18.3 | 35 ± 11 | - | - |
Sb | 0.03 | 0.02 | 0.06 | 0.01 | 41.8 | 0.086 ± 0.018 | - | 0.007–0.028 |
I | 12 | 7 | 18 | 5 | 37.5 | 13.9 ± 0.9 | - | - |
Cs | 0.04 | 0.01 | 0.11 | 0.03 | 71.8 | 0.036 ± 0.009 | - | - |
Ba | 19 | 16 | 93 | 36 | 87.2 | 3.8 ± 1.4 | 4.8 ± 0.1 | - |
La | 0.3 | 0.1 | 0.5 | 0.1 | 37.2 | 2.54 ± 0.52 | - | - |
Tb | 0.007 | 0.003 | 0.012 | 0.003 | 40.6 | 0.022 ± 0.004 | - | - |
Ta | 0.003 | 0.001 | 0.008 | 0.002 | 53.0 | 0.012 ± 0.002 | - | - |
Th | 0.08 | 0.05 | 0.14 | 0.03 | 31.9 | 0.13 ± 0.02 | - | - |
U | 0.2 | 0.1 | 0.4 | 0.1 | 44.8 | 0.067 ± 0.019 | - | - |
Present Study | [21] | [17] | [31] | |||||
---|---|---|---|---|---|---|---|---|
Median | Minimum | Maximum | Std. Dev. | Coef. Var., % | Black Sea | Danger Bay | Adriatic Sea | |
Na | 3037 | 2640 | 3400 | 248 | 8.2 | - | 4300 ± 300 | 2500–4000 |
Mg | 1006 | 840 | 1130 | 103 | 10.3 | - | 797 ± 38 | 800–1400 |
Al | 9 | 7 | 11 | 1 | 14.2 | - | 45 ± 6.6 | 2.5–27 |
Cl | 185 | 147 | 260 | 38 | 20.7 | - | - | - |
Ca, % | 39.1 | 36.0 | 44.0 | 2.2 | 5.6 | - | 36 ± 1 | 35–37 |
Sc | 0.02 | 0.01 | 0.03 | 0.01 | 50.4 | - | 0.05 ± 0.002 | - |
V | 0.1 | 0.1 | 0.2 | 0.06 | 40.7 | 0.024 ± 0.001 | 0.3 ± 0.04 | - |
Cr | 1.3 | 0.8 | 1.6 | 0.30 | 23.4 | <0.1 | 1.6 ± 0.4 | - |
Mn | 4.1 | 2.7 | 6.5 | 1.46 | 35.5 | 6.01 ± 0.09 | 1.9 ± 0.3 | 2–155 |
Fe | 53 | 24 | 88 | 21 | 39.7 | 4.6 ± 0.4 | 155 ± 25 | 15–550 |
Co | 0.06 | 0.03 | 0.10 | 0.02 | 40.2 | <0.1 | 0.1 ± 0.03 | - |
Ni | 0.3 | 0.2 | 0.4 | 0.08 | 23.7 | <0.1 | 0.5 ± 0.12 | 7–33 |
Zn | 2.3 | 1.6 | 3.2 | 0.46 | 20.1 | 0.61 ± 0.07 | 4 ± 0.2 | 2.5–15 |
As | 0.2 | 0.1 | 0.3 | 0.06 | 30.1 | 0.024 ± 0.002 | - | - |
Se | 0.06 | 0.02 | 0.08 | 0.02 | 32.3 | - | - | - |
Br | 67 | 54 | 82 | 10 | 15.1 | - | 67 ± 2 | - |
Rb | 0.14 | 0.05 | 0.24 | 0.05 | 39.1 | - | - | |
Sr | 1000 | 950 | 1040 | 25 | 2.5 | - | 1523 ± 25 | 500–800 |
Sb | 0.01 | 0.00 | 0.03 | 0.01 | 65.6 | - | 0.03 ± 0.009 | - |
I | 5.9 | 4.9 | 6.9 | 0.7 | 11.5 | - | 13 ± 0.4 | - |
Cs | 0.02 | 0.01 | 0.05 | 0.02 | 70.4 | - | 0.06 ± 0.02 | - |
Ba | 17 | 11 | 27 | 6 | 36.8 | 11.4 ± 0.6 | - | - |
Tb | 0.002 | 0.001 | 0.003 | 0.001 | 46.8 | - | - | |
Th | 0.02 | 0.01 | 0.04 | 0.01 | 55.2 | - | - |
40K | 137Cs | 232Th | 226Ra | 235U | ||||||
---|---|---|---|---|---|---|---|---|---|---|
A | U | A | U | A | U | A | U | A | U | |
Mussel shells | ||||||||||
St. 1 | <2.8 | - | <0.16 | - | <0.79 | - | - | - | - | - |
St. 2 | <2.7 | - | <0.15 | - | <0.63 | - | - | - | - | - |
St. 3 | <2.6 | - | <0.13 | - | <0.67 | - | - | - | - | - |
Station | Weight/Length | Cf |
---|---|---|
1 | 0.062 | 1.44 × 10−5 |
2 | 0.038 | 1.76 × 10−5 |
3 | 0.030 | 1.16 × 10−5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nekhoroshkov, P.; Zinicovscaia, I.; Vergel, K.; Grozdov, D.; Chaligava, O.; Kravtsova, A. Macro- and Microelements and Radionuclides in the Mussel Mytilus galloprovincialis from Recreational and Harbor Sites of the Crimean Peninsula (The Black Sea). Hydrobiology 2022, 1, 304-316. https://doi.org/10.3390/hydrobiology1030022
Nekhoroshkov P, Zinicovscaia I, Vergel K, Grozdov D, Chaligava O, Kravtsova A. Macro- and Microelements and Radionuclides in the Mussel Mytilus galloprovincialis from Recreational and Harbor Sites of the Crimean Peninsula (The Black Sea). Hydrobiology. 2022; 1(3):304-316. https://doi.org/10.3390/hydrobiology1030022
Chicago/Turabian StyleNekhoroshkov, Pavel, Inga Zinicovscaia, Konstantin Vergel, Dmitry Grozdov, Omar Chaligava, and Alexandra Kravtsova. 2022. "Macro- and Microelements and Radionuclides in the Mussel Mytilus galloprovincialis from Recreational and Harbor Sites of the Crimean Peninsula (The Black Sea)" Hydrobiology 1, no. 3: 304-316. https://doi.org/10.3390/hydrobiology1030022
APA StyleNekhoroshkov, P., Zinicovscaia, I., Vergel, K., Grozdov, D., Chaligava, O., & Kravtsova, A. (2022). Macro- and Microelements and Radionuclides in the Mussel Mytilus galloprovincialis from Recreational and Harbor Sites of the Crimean Peninsula (The Black Sea). Hydrobiology, 1(3), 304-316. https://doi.org/10.3390/hydrobiology1030022