Assessing Standard Error Estimation Approaches for Robust Mean-Geometric Mean Linking
Abstract
1. Introduction
2. Robust Mean-Geometric Mean Linking
2.1. and Loss Functions
2.2. Estimation of
2.3. Estimation of
3. Estimation of Standard Errors and Confidence Intervals
3.1. Delta Method (DM)
3.2. Weighted Least Squares (WLS)
3.3. Bootstrap Methods
3.3.1. Normal Distribution Bootstrap CI (BNO)
3.3.2. Percentile Bootstrap CI (BPE)
3.3.3. Basic Bootstrap CI (BBB)
3.3.4. Bias-Corrected Bootstrap CI (BBC)
4. Simulation Study
4.1. Method
4.2. Results
5. Empirical Examples
5.1. Dataset dataDIF
5.2. Dataset MathExam14W
6. Discussion
7. Conclusions
- The DM method exhibited highly inflated coverage rates for the linking parameter estimates, accompanied by substantially reduced power rates.
- The WLS method performed well with loss functions for or , but showed notable undercoverage in small-to-moderate sample sizes.
- Among the bootstrap methods, BBB and BBC—which include a bias correction term—achieved desirable coverage rates, unlike the BNO and BPE methods, which lack such correction.
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
2PL | two-parameter logistic |
BBB | basic bootstrap |
BBC | bias-corrected bootstrap |
BNO | bootstrap based on normal distribution |
BPE | percentile bootstrap |
CI | confidence interval |
DIF | differential item functioning |
DM | delta method |
IRF | item response function |
IRT | item response theory |
MGM | mean-geometric mean |
MML | marginal maximum likelihood |
RMSE | root mean square error |
SD | standard deviation |
SEM | structural equation model |
WLS | weighted least squares |
References
- Bock, R.D.; Gibbons, R.D. Item Response Theory; Wiley: New York, NY, USA, 2021. [Google Scholar] [CrossRef]
- Cai, L.; Moustaki, I. Estimation methods in latent variable models for categorical outcome variables. In The Wiley Handbook of Psychometric Testing: A Multidisciplinary Reference on Survey, Scale and Test; Irwing, P., Booth, T., Hughes, D.J., Eds.; Wiley: New York, NY, USA, 2018; pp. 253–277. [Google Scholar] [CrossRef]
- Chen, Y.; Li, X.; Liu, J.; Ying, Z. Item response theory – A statistical framework for educational and psychological measurement. Stat. Sci. 2025, 40, 167–194. [Google Scholar] [CrossRef]
- Yen, W.M.; Fitzpatrick, A.R. Item response theory. In Educational Measurement; Brennan, R.L., Ed.; Praeger Publishers: Westport, CT, USA, 2006; pp. 111–154. [Google Scholar]
- Kolen, M.J.; Brennan, R.L. Test Equating, Scaling, and Linking; Springer: New York, NY, USA, 2014. [Google Scholar] [CrossRef]
- González, J.; Wiberg, M. Applying Test Equating Methods. Using R; Springer: New York, NY, USA, 2017. [Google Scholar] [CrossRef]
- van der Linden, W.J. Unidimensional logistic response models. In Handbook of Item Response Theory, Volume 1: Models; van der Linden, W.J., Ed.; CRC Press: Boca Raton, FL, USA, 2016; pp. 11–30. [Google Scholar] [CrossRef]
- Birnbaum, A. Some latent trait models and their use in inferring an examinee’s ability. In Statistical Theories of Mental Test Scores; Lord, F.M., Novick, M.R., Eds.; MIT Press: Reading, MA, USA, 1968; pp. 397–479. [Google Scholar]
- Bock, R.D.; Aitkin, M. Marginal maximum likelihood estimation of item parameters: Application of an EM algorithm. Psychometrika 1981, 46, 443–459. [Google Scholar] [CrossRef]
- Glas, C.A.W. Maximum-likelihood estimation. In Handbook of Item Response Theory, Volume 2: Statistical Tools; van der Linden, W.J., Ed.; CRC Press: Boca Raton, FL, USA, 2016; pp. 197–216. [Google Scholar] [CrossRef]
- Lee, W.C.; Lee, G. IRT linking and equating. In The Wiley Handbook of Psychometric Testing: A Multidisciplinary Reference on Survey, Scale and Test; Irwing, P., Booth, T., Hughes, D.J., Eds.; Wiley: New York, NY, USA, 2018; pp. 639–673. [Google Scholar] [CrossRef]
- Sansivieri, V.; Wiberg, M.; Matteucci, M. A review of test equating methods with a special focus on IRT-based approaches. Statistica 2017, 77, 329–352. [Google Scholar] [CrossRef]
- Holland, P.W.; Wainer, H. (Eds.) Differential Item Functioning: Theory and Practice; Lawrence Erlbaum: Hillsdale, NJ, USA, 1993. [Google Scholar] [CrossRef]
- Mellenbergh, G.J. Item bias and item response theory. Int. J. Educ. Res. 1989, 13, 127–143. [Google Scholar] [CrossRef]
- Millsap, R.E. Statistical Approaches to Measurement Invariance; Routledge: New York, NY, USA, 2011. [Google Scholar] [CrossRef]
- Penfield, R.D.; Camilli, G. Differential item functioning and item bias. In Handbook of Statistics, Volume 26: Psychometrics; Rao, C.R., Sinharay, S., Eds.; 2007; pp. 125–167. [Google Scholar] [CrossRef]
- Wells, C.S. Assessing Measurement Invariance for Applied Research; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar] [CrossRef]
- Robitzsch, A. A comparison of linking methods for two groups for the two-parameter logistic item response model in the presence and absence of random differential item functioning. Foundations 2021, 1, 116–144. [Google Scholar] [CrossRef]
- Mislevy, R.J.; Bock, R.D. BILOG 3. Item Analysis and Test Scoring with Binary Logistic Models; Software Manual; Scientific Software International: Chicago, IL, USA, 1990. [Google Scholar]
- Haberman, S.J. Linking Parameter Estimates Derived from an Item Response Model Through Separate Calibrations; Research Report No. RR-09-40; Educational Testing Service: Princeton, NJ, USA, 2009. [Google Scholar] [CrossRef]
- Battauz, M. Multiple equating of separate IRT calibrations. Psychometrika 2017, 82, 610–636. [Google Scholar] [CrossRef] [PubMed]
- Battauz, M. equateIRT: An R package for IRT test equating. J. Stat. Softw. 2015, 68, 1–22. [Google Scholar] [CrossRef]
- van der Linden, W.J.; Barrett, M.D. Linking item response model parameters. Psychometrika 2016, 81, 650–673. [Google Scholar] [CrossRef]
- Robitzsch, A. Comparing robust linking and regularized estimation for linking two groups in the 1PL and 2PL models in the presence of sparse uniform differential item functioning. Stats 2023, 6, 192–208. [Google Scholar] [CrossRef]
- Robitzsch, A. Extensions to mean–geometric mean linking. Mathematics 2025, 13, 35. [Google Scholar] [CrossRef]
- Halpin, P.F. Differential item functioning via robust scaling. Psychometrika 2024, 89, 796–821. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Cui, Z.; Fang, Y.; Chen, H. Using a linear regression method to detect outliers in IRT common item equating. Appl. Psychol. Meas. 2013, 37, 522–540. [Google Scholar] [CrossRef]
- Jurich, D.; Liu, C. Detecting item parameter drift in small sample Rasch equating. Appl. Meas. Educ. 2023, 36, 326–339. [Google Scholar] [CrossRef]
- Liu, C.; Jurich, D. Outlier detection using t-test in Rasch IRT equating under NEAT design. Appl. Psychol. Meas. 2023, 47, 34–47. [Google Scholar] [CrossRef]
- Magis, D.; De Boeck, P. Identification of differential item functioning in multiple-group settings: A multivariate outlier detection approach. Multivar. Behav. Res. 2011, 46, 733–755. [Google Scholar] [CrossRef]
- Magis, D.; De Boeck, P. A robust outlier approach to prevent type I error inflation in differential item functioning. Educ. Psychol. Meas. 2012, 72, 291–311. [Google Scholar] [CrossRef]
- Manna, V.F.; Gu, L. Different Methods of Adjusting for form Difficulty Under the Rasch Model: Impact on Consistency of Assessment Results; Research Report No. RR-19-08; Educational Testing Service: Princeton, NJ, USA, 2019. [Google Scholar] [CrossRef]
- Robitzsch, A. Robust and nonrobust linking of two groups for the Rasch model with balanced and unbalanced random DIF: A comparative simulation study and the simultaneous assessment of standard errors and linking errors with resampling techniques. Symmetry 2021, 13, 2198. [Google Scholar] [CrossRef]
- Strobl, C.; Kopf, J.; Kohler, L.; von Oertzen, T.; Zeileis, A. Anchor point selection: Scale alignment based on an inequality criterion. Appl. Psychol. Meas. 2021, 45, 214–230. [Google Scholar] [CrossRef]
- Wang, W.; Liu, Y.; Liu, H. Testing differential item functioning without predefined anchor items using robust regression. J. Educ. Behav. Stat. 2022, 47, 666–692. [Google Scholar] [CrossRef]
- Huber, P.J.; Ronchetti, E.M. Robust Statistics; Wiley: New York, NY, USA, 2009. [Google Scholar] [CrossRef]
- Maronna, R.A.; Martin, R.D.; Yohai, V.J. Robust Statistics: Theory and Methods; Wiley: New York, NY, USA, 2006. [Google Scholar] [CrossRef]
- Wilcox, R. Modern Statistics for the Social and Behavioral Sciences: A Practical Introduction; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar] [CrossRef]
- Lipovetsky, S. Optimal Lp-metric for minimizing powered deviations in regression. J. Mod. Appl. Stat. Methods 2007, 6, 20. [Google Scholar] [CrossRef]
- Giacalone, M.; Panarello, D.; Mattera, R. Multicollinearity in regression: An efficiency comparison between Lp-norm and least squares estimators. Qual. Quant. 2018, 52, 1831–1859. [Google Scholar] [CrossRef]
- Robitzsch, A. Lp loss functions in invariance alignment and Haberman linking with few or many groups. Stats 2020, 3, 246–283. [Google Scholar] [CrossRef]
- Asparouhov, T.; Muthén, B. Multiple-group factor analysis alignment. Struct. Equ. Modeling 2014, 21, 495–508. [Google Scholar] [CrossRef]
- Muthén, B.; Asparouhov, T. IRT studies of many groups: The alignment method. Front. Psychol. 2014, 5, 978. [Google Scholar] [CrossRef]
- Robitzsch, A. Examining differences of invariance alignment in the Mplus software and the R package sirt. Mathematics 2024, 12, 770. [Google Scholar] [CrossRef]
- Robitzsch, A. Comparing robust Haberman linking and invariance alignment. Stats 2025, 8, 3. [Google Scholar] [CrossRef]
- Oelker, M.R.; Pößnecker, W.; Tutz, G. Selection and fusion of categorical predictors with L0-type penalties. Stat. Model. 2015, 15, 389–410. [Google Scholar] [CrossRef]
- Oelker, M.R.; Tutz, G. A uniform framework for the combination of penalties in generalized structured models. Adv. Data Anal. Classif. 2017, 11, 97–120. [Google Scholar] [CrossRef]
- Xiang, J.; Yue, H.; Yin, X.; Wang, L. A new smoothed l0 regularization approach for sparse signal recovery. Math. Probl. Eng. 2019, 2019, 1978154. [Google Scholar] [CrossRef]
- Wang, L.; Yin, X.; Yue, H.; Xiang, J. A regularized weighted smoothed L0 norm minimization method for underdetermined blind source separation. Sensors 2018, 18, 4260. [Google Scholar] [CrossRef]
- O’Neill, M.; Burke, K. Variable selection using a smooth information criterion for distributional regression models. Stat. Comput. 2023, 33, 71. [Google Scholar] [CrossRef]
- Robitzsch, A. L0 and Lp loss functions in model-robust estimation of structural equation models. Psych 2023, 5, 1122–1139. [Google Scholar] [CrossRef]
- Jaeckel, L.A. Robust estimates of location: Symmetry and asymmetric contamination. Ann. Math. Stat. 1971, 42, 1020–1034. [Google Scholar] [CrossRef]
- Robitzsch, A. Computational aspects of L0 linking in the Rasch model. Algorithms 2025, 18, 213. [Google Scholar] [CrossRef]
- Ogasawara, H. Standard errors of item response theory equating/linking by response function methods. Appl. Psychol. Meas. 2001, 25, 53–67. [Google Scholar] [CrossRef]
- Ogasawara, H. Item response theory true score equatings and their standard errors. J. Educ. Behav. Stat. 2001, 26, 31–50. [Google Scholar] [CrossRef]
- Ogasawara, H. Applications of asymptotic expansion in item response theory linking. In Statistical Models for Test Equating, Scaling, and Linking; von Davier, A., Ed.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 261–280. [Google Scholar] [CrossRef]
- Battauz, M. IRT test equating in complex linkage plans. Psychometrika 2013, 78, 464–480. [Google Scholar] [CrossRef]
- Battauz, M. Factors affecting the variability of IRT equating coefficients. Stat. Neerl. 2015, 69, 85–101. [Google Scholar] [CrossRef]
- Andersson, B. Asymptotic variance of linking coefficient estimators for polytomous IRT models. Appl. Psychol. Meas. 2018, 42, 192–205. [Google Scholar] [CrossRef]
- Zhang, Z. Asymptotic standard errors of equating coefficients using the characteristic curve methods for the graded response model. Appl. Meas. Educ. 2020, 33, 309–330. [Google Scholar] [CrossRef]
- Zhang, Z. Asymptotic standard errors of parameter scale transformation coefficients in test equating under the nominal response model. Appl. Psychol. Meas. 2021, 45, 134–138. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z. Asymptotic standard errors of generalized partial credit model true score equating using characteristic curve methods. Appl. Psychol. Meas. 2021, 45, 331–345. [Google Scholar] [CrossRef]
- Jewsbury, P.A. Error Variance in Common Population Linking Bridge Studies; Research Report No. RR-19-42; Educational Testing Service: Princeton, NJ, USA, 2019. [Google Scholar] [CrossRef]
- Jewsbury, P.A. Generally applicable variance estimation methods for common-population linking. J. Educ. Behav. Stat. 2024. [Google Scholar] [CrossRef]
- Jewsbury, P.A. Linking error on achievement levels accounting for dependencies and complex sampling. J. Educ. Meas. 2025; epub ahead of print. [Google Scholar] [CrossRef]
- Robitzsch, A. Estimation of standard error, linking error, and total error for robust and nonrobust linking methods in the two-parameter logistic model. Stats 2024, 7, 592–612. [Google Scholar] [CrossRef]
- Fox, J. Applied Regression Analysis and Generalized Linear Models; Sage: Thousand Oaks, CA, USA, 2016; Available online: https://bit.ly/38XUSX1 (accessed on 4 May 2025).
- Fox, J.; Weisberg, S. Robust Regression in R: An Appendix to an R Companion to Applied Regression, 2nd ed.; Sage: Thousand Oaks, CA, USA, 2010; Available online: https://bit.ly/3canwcw (accessed on 4 May 2025).
- Chen, Y.; Li, C.; Ouyang, J.; Xu, G. DIF statistical inference without knowing anchoring items. Psychometrika 2023, 88, 1097–1122. [Google Scholar] [CrossRef]
- Efron, B.; Tibshirani, R.J. An Introduction to the Bootstrap; CRC Press: Boca Raton, FL, USA, 1994. [Google Scholar] [CrossRef]
- Davison, A.C.; Hinkley, D.V. Bootstrap Methods and Their Application; Cambridge University Press: Cambridge, UK, 1997. [Google Scholar] [CrossRef]
- Lietz, P.; Cresswell, J.C.; Rust, K.F.; Adams, R.J. (Eds.) Implementation of Large-Scale Education Assessments; Wiley: New York, NY, USA, 2017. [Google Scholar] [CrossRef]
- Muthén, L.K.; Muthén, B.O. How to use a Monte Carlo study to decide on sample size and determine power. Struct. Equ. Modeling 2002, 9, 599–620. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria, 2024. Available online: https://www.R-project.org (accessed on 15 June 2024).
- Robitzsch, A. sirt: Supplementary Item Response Theory Models. R Package Version 4.2-114. 2025. Available online: https://github.com/alexanderrobitzsch/sirt (accessed on 7 April 2025).
- Battauz, M. equateMultiple: Equating of Multiple Forms. R Package Version 1.0.0. 2024. Available online: https://cran.r-project.org/web/packages/equateMultiple/index.html (accessed on 7 April 2025). [CrossRef]
- Battauz, M. On Wald tests for differential item functioning detection. Stat. Methods Appl. 2019, 28, 103–118. [Google Scholar] [CrossRef]
- Zeileis, A.; Strobl, C.; Wickelmaier, F.; Komboz, B.; Kopf, J.; Schneider, L.; Debelak, R. psychotools: Psychometric Modeling Infrastructure. R Package Version 0.7-4. 2024. Available online: https://cran.r-project.org/web/packages/psychotools/index.html (accessed on 7 April 2025). [CrossRef]
- Fitts, D.A. Expected and empirical coverages of different methods for generating noncentral t confidence intervals for a standardized mean difference. Behav. Res. Methods 2021, 53, 2412–2429. [Google Scholar] [CrossRef]
- Robitzsch, A. Linking error in the 2PL model. J 2023, 6, 58–84. [Google Scholar] [CrossRef]
- Bollen, K.A. Structural Equations with Latent Variables; Wiley: New York, NY, USA, 1989. [Google Scholar] [CrossRef]
- Yuan, K.H.; Bentler, P.M. Structural Equation Modeling with Robust Covarianc. Available online: https://www3.nd.edu/~kyuan/courses/sem/readpapers/Yuan-Bentler-SM98.pdf (accessed on 7 April 2025). [CrossRef]
- Siemsen, E.; Bollen, K.A. Least absolute deviation estimation in structural equation modeling. Sociol. Methods Res. 2007, 36, 227–265. [Google Scholar] [CrossRef]
- van Kesteren, E.J.; Oberski, D.L. Flexible extensions to structural equation models using computation graphs. Struct. Equ. Modeling 2022, 29, 233–247. [Google Scholar] [CrossRef]
Bias, | SD, | RMSE, | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Par | d | N | 2 | 1 | 0.5 | 0 | 2 | 1 | 0.5 | 0 | 2 | 1 | 0.5 | 0 | ||
0 | 500 | 0.005 | 0.002 | 0.001 | −0.001 | 0.085 | 0.086 | 0.092 | 0.100 | 0.085 | 0.086 | 0.092 | 0.100 | |||
1000 | 0.002 | 0.001 | 0.000 | −0.001 | 0.059 | 0.059 | 0.064 | 0.070 | 0.059 | 0.059 | 0.064 | 0.070 | ||||
2000 | 0.002 | 0.002 | 0.002 | 0.002 | 0.043 | 0.043 | 0.045 | 0.047 | 0.043 | 0.043 | 0.045 | 0.047 | ||||
4000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.030 | 0.031 | 0.031 | 0.032 | 0.030 | 0.031 | 0.031 | 0.032 | ||||
10,000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.019 | 0.019 | 0.019 | 0.019 | 0.019 | 0.019 | 0.019 | 0.019 | ||||
0.6 | 500 | −0.178 | −0.115 | −0.075 | −0.015 | 0.084 | 0.099 | 0.113 | 0.123 | 0.197 | 0.152 | 0.136 | 0.124 | |||
1000 | −0.180 | −0.083 | −0.044 | −0.005 | 0.058 | 0.069 | 0.077 | 0.083 | 0.189 | 0.108 | 0.089 | 0.083 | ||||
2000 | −0.179 | −0.059 | −0.026 | 0.000 | 0.041 | 0.048 | 0.051 | 0.054 | 0.183 | 0.076 | 0.057 | 0.054 | ||||
4000 | −0.180 | −0.045 | −0.016 | −0.001 | 0.029 | 0.033 | 0.035 | 0.035 | 0.182 | 0.055 | 0.038 | 0.035 | ||||
10,000 | −0.180 | −0.032 | −0.010 | −0.001 | 0.018 | 0.021 | 0.021 | 0.021 | 0.181 | 0.038 | 0.024 | 0.021 | ||||
0 | 500 | 0.005 | 0.004 | 0.004 | 0.003 | 0.078 | 0.084 | 0.094 | 0.108 | 0.078 | 0.084 | 0.094 | 0.108 | |||
1000 | 0.003 | 0.002 | 0.002 | 0.002 | 0.054 | 0.058 | 0.065 | 0.075 | 0.054 | 0.058 | 0.065 | 0.075 | ||||
2000 | 0.002 | 0.002 | 0.003 | 0.003 | 0.038 | 0.040 | 0.044 | 0.048 | 0.038 | 0.040 | 0.044 | 0.048 | ||||
4000 | 0.001 | 0.001 | 0.001 | 0.001 | 0.026 | 0.027 | 0.029 | 0.030 | 0.026 | 0.027 | 0.029 | 0.030 | ||||
10,000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.017 | 0.017 | 0.018 | 0.018 | 0.017 | 0.017 | 0.018 | 0.018 | ||||
0.6 | 500 | 0.004 | 0.003 | 0.004 | 0.004 | 0.076 | 0.082 | 0.092 | 0.107 | 0.076 | 0.082 | 0.092 | 0.107 | |||
1000 | 0.002 | 0.001 | 0.001 | 0.001 | 0.053 | 0.057 | 0.063 | 0.073 | 0.053 | 0.057 | 0.063 | 0.073 | ||||
2000 | 0.002 | 0.002 | 0.002 | 0.002 | 0.037 | 0.039 | 0.042 | 0.046 | 0.037 | 0.039 | 0.042 | 0.046 | ||||
4000 | 0.001 | 0.001 | 0.001 | 0.001 | 0.027 | 0.028 | 0.029 | 0.030 | 0.027 | 0.028 | 0.029 | 0.030 | ||||
10,000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.017 | 0.017 | 0.018 | 0.018 | 0.017 | 0.017 | 0.018 | 0.018 |
p | d | N | DM | WLS | BNO | BPE | BBB | BBC | DM | WLS | BNO | BPE | BBB | BBC | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2 | 0 | 500 | 95.1 | 95.1 | 95.2 | 94.9 | 95.3 | 95.0 | 94.2 | 94.2 | 94.9 | 94.5 | 94.6 | 95.1 | |
1000 | 95.5 | 95.5 | 95.7 | 95.5 | 95.4 | 95.8 | 94.7 | 94.7 | 95.1 | 94.8 | 94.7 | 95.0 | |||
2000 | 94.4 | 94.4 | 94.3 | 94.2 | 94.1 | 94.0 | 95.1 | 95.1 | 95.4 | 95.0 | 95.1 | 95.1 | |||
4000 | 94.5 | 94.5 | 94.5 | 94.4 | 94.3 | 94.4 | 95.3 | 95.3 | 95.2 | 94.9 | 95.2 | 95.1 | |||
10,000 | 95.6 | 95.6 | 95.7 | 95.4 | 95.5 | 95.1 | 95.2 | 95.2 | 95.4 | 95.1 | 95.2 | 95.0 | |||
0.6 | 500 | 94.5 | 94.5 | 94.5 | 94.1 | 94.5 | 94.2 | 94.9 | 94.9 | 95.4 | 95.1 | 95.4 | 95.6 | ||
1000 | 94.9 | 94.9 | 94.9 | 94.9 | 95.0 | 94.6 | 95.1 | 95.1 | 95.4 | 95.0 | 95.0 | 95.4 | |||
2000 | 95.2 | 95.2 | 95.2 | 95.0 | 95.1 | 94.9 | 95.6 | 95.6 | 95.6 | 95.4 | 95.4 | 95.4 | |||
4000 | 95.5 | 95.5 | 95.5 | 95.3 | 95.5 | 95.3 | 94.9 | 94.9 | 95.0 | 95.0 | 94.6 | 95.0 | |||
10,000 | 95.1 | 95.1 | 94.9 | 94.9 | 94.8 | 95.0 | 94.7 | 94.7 | 94.9 | 94.5 | 94.6 | 94.6 | |||
1 | 0 | 500 | 99.1 | 95.9 | 96.4 | 96.9 | 94.2 | 93.8 | 98.9 | 95.1 | 96.0 | 97.3 | 92.4 | 92.6 | |
1000 | 98.7 | 96.0 | 96.6 | 97.0 | 94.9 | 94.3 | 98.9 | 95.6 | 96.4 | 97.3 | 93.7 | 93.5 | |||
2000 | 97.6 | 94.9 | 95.6 | 95.9 | 94.1 | 94.2 | 98.9 | 95.5 | 96.8 | 97.5 | 94.7 | 94.6 | |||
4000 | 96.8 | 94.7 | 95.5 | 95.5 | 94.2 | 94.3 | 98.1 | 95.6 | 96.7 | 96.9 | 95.1 | 95.1 | |||
10,000 | 96.5 | 95.6 | 96.0 | 96.3 | 95.0 | 95.1 | 97.3 | 95.2 | 96.4 | 96.7 | 95.0 | 94.9 | |||
0.6 | 500 | 99.0 | 94.5 | 95.4 | 95.2 | 90.0 | 90.0 | 99.4 | 96.2 | 97.0 | 97.7 | 93.4 | 93.9 | ||
1000 | 98.9 | 94.5 | 96.3 | 95.3 | 91.7 | 91.5 | 99.0 | 95.2 | 96.4 | 97.4 | 93.8 | 94.3 | |||
2000 | 98.6 | 94.8 | 96.8 | 95.5 | 92.2 | 92.0 | 98.7 | 95.8 | 97.1 | 97.6 | 94.9 | 95.0 | |||
4000 | 98.0 | 94.8 | 96.6 | 94.7 | 92.6 | 92.5 | 97.9 | 95.0 | 96.3 | 96.9 | 94.6 | 94.8 | |||
10,000 | 96.5 | 94.2 | 96.0 | 94.1 | 92.8 | 92.6 | 96.4 | 94.5 | 95.5 | 95.8 | 94.5 | 94.7 | |||
0.5 | 0 | 500 | 99.8 | 96.4 | 97.2 | 98.7 | 92.9 | 92.9 | 99.8 | 95.3 | 97.5 | 99.2 | 91.1 | 92.4 | |
1000 | 99.9 | 95.9 | 97.8 | 98.9 | 93.4 | 93.5 | 99.6 | 94.5 | 97.6 | 99.2 | 91.5 | 92.1 | |||
2000 | 99.3 | 94.6 | 97.2 | 97.9 | 93.3 | 93.5 | 99.6 | 94.8 | 98.4 | 99.3 | 93.4 | 94.0 | |||
4000 | 98.6 | 94.8 | 96.8 | 97.3 | 94.2 | 94.3 | 99.3 | 94.7 | 98.1 | 98.8 | 94.9 | 95.0 | |||
10,000 | 97.5 | 95.4 | 96.7 | 97.1 | 95.2 | 95.0 | 98.5 | 94.7 | 97.6 | 98.1 | 95.0 | 95.2 | |||
0.6 | 500 | 99.7 | 94.7 | 97.2 | 96.9 | 88.3 | 91.9 | 99.8 | 95.8 | 98.2 | 99.3 | 91.5 | 92.9 | ||
1000 | 99.7 | 94.5 | 98.1 | 97.9 | 91.3 | 92.3 | 99.8 | 95.0 | 97.6 | 99.3 | 92.6 | 93.4 | |||
2000 | 99.3 | 94.7 | 97.9 | 98.2 | 93.7 | 93.9 | 99.5 | 94.9 | 98.3 | 98.9 | 94.1 | 94.7 | |||
4000 | 99.0 | 94.1 | 97.6 | 97.7 | 94.3 | 94.1 | 99.4 | 94.8 | 97.8 | 98.7 | 94.7 | 94.4 | |||
10,000 | 97.7 | 94.4 | 96.8 | 96.7 | 94.5 | 94.7 | 98.1 | 94.1 | 96.9 | 97.2 | 95.4 | 95.3 | |||
0 | 0 | 500 | 99.9 | 92.4 | 98.1 | 99.4 | 93.4 | 95.9 | 99.6 | 87.0 | 99.0 | 99.8 | 92.8 | 96.9 | |
1000 | 99.9 | 92.8 | 99.0 | 99.8 | 94.2 | 95.6 | 99.6 | 87.4 | 99.0 | 99.8 | 93.2 | 96.2 | |||
2000 | 100 | 94.1 | 98.6 | 99.2 | 95.4 | 95.9 | 99.9 | 91.1 | 99.5 | 99.9 | 96.3 | 97.1 | |||
4000 | 100 | 96.0 | 97.8 | 98.4 | 95.9 | 96.2 | 100 | 94.9 | 99.2 | 99.6 | 97.1 | 97.3 | |||
10,000 | 99.9 | 97.6 | 96.7 | 97.0 | 96.0 | 95.9 | 100 | 97.6 | 97.9 | 98.1 | 97.1 | 97.1 | |||
0.6 | 500 | 99.6 | 88.0 | 98.7 | 98.6 | 94.5 | 97.9 | 99.6 | 86.7 | 99.1 | 99.7 | 92.4 | 97.2 | ||
1000 | 99.7 | 88.8 | 99.3 | 99.5 | 95.2 | 96.7 | 99.8 | 88.5 | 99.1 | 99.9 | 93.9 | 96.7 | |||
2000 | 99.8 | 91.6 | 99.0 | 99.5 | 95.4 | 96.6 | 99.7 | 91.6 | 99.4 | 99.7 | 96.2 | 97.4 | |||
4000 | 100 | 94.1 | 98.7 | 99.2 | 96.3 | 96.8 | 99.9 | 94.9 | 98.8 | 99.4 | 97.0 | 97.4 | |||
10,000 | 100 | 96.3 | 97.0 | 97.2 | 95.9 | 95.9 | 99.9 | 97.0 | 97.2 | 97.5 | 96.3 | 96.2 |
Test of H0: μ = 0 | Test of H0: σ = 1 | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
p | d | N | DM | WLS | BNO | BPE | BBB | BBC | DM | WLS | BNO | BPE | BBB | BBC | |
2 | 0 | 500 | 95.6 | 95.6 | 95.4 | 96.0 | 95.0 | 95.9 | 78.9 | 78.9 | 76.6 | 82.1 | 71.2 | 80.7 | |
1000 | 99.9 | 99.9 | 99.9 | 99.9 | 99.9 | 99.9 | 97.9 | 97.9 | 97.7 | 98.2 | 97.3 | 98.0 | |||
2000 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | |||
4000 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | |||
10,000 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | |||
0.6 | 500 | 30.3 | 30.3 | 29.9 | 31.2 | 29.3 | 30.4 | 79.9 | 79.9 | 77.5 | 83.0 | 71.8 | 81.9 | ||
1000 | 54.4 | 54.4 | 54.6 | 55.4 | 53.5 | 54.8 | 98.2 | 98.2 | 98.0 | 98.4 | 97.5 | 98.4 | |||
2000 | 84.1 | 84.1 | 84.0 | 84.4 | 83.8 | 84.3 | 100 | 100 | 100 | 100 | 100 | 100 | |||
4000 | 98.5 | 98.5 | 98.4 | 98.5 | 98.4 | 98.4 | 100 | 100 | 100 | 100 | 100 | 100 | |||
10,000 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | |||
1 | 0 | 500 | 80.3 | 94.1 | 93.7 | 95.1 | 91.6 | 93.0 | 30.9 | 68.2 | 64.6 | 73.6 | 56.5 | 70.1 | |
1000 | 99.5 | 100 | 100 | 100 | 99.9 | 99.9 | 82.7 | 96.2 | 94.6 | 96.9 | 89.9 | 94.4 | |||
2000 | 100 | 100 | 100 | 100 | 100 | 100 | 99.9 | 100 | 100 | 100 | 99.9 | 100 | |||
4000 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | |||
10,000 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | |||
0.6 | 500 | 19.9 | 48.4 | 44.0 | 25.8 | 59.8 | 60.5 | 30.5 | 68.4 | 64.9 | 73.1 | 57.4 | 69.7 | ||
1000 | 71.1 | 89.0 | 86.0 | 74.2 | 91.3 | 91.0 | 83.8 | 96.1 | 94.6 | 97.0 | 90.5 | 94.1 | |||
2000 | 99.1 | 99.9 | 99.7 | 99.6 | 99.9 | 99.9 | 99.9 | 99.9 | 99.9 | 100 | 99.9 | 99.9 | |||
4000 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | |||
10,000 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | |||
0.5 | 0 | 500 | 34.2 | 89.5 | 86.5 | 91.0 | 78.9 | 84.5 | 6.1 | 55.5 | 44.6 | 55.5 | 40.4 | 54.5 | |
1000 | 81.8 | 99.9 | 99.6 | 99.9 | 98.6 | 99.0 | 36.5 | 91.4 | 82.7 | 91.1 | 72.4 | 83.0 | |||
2000 | 99.0 | 100 | 100 | 100 | 100 | 100 | 87.2 | 99.9 | 99.6 | 100 | 97.4 | 99.2 | |||
4000 | 100 | 100 | 100 | 100 | 100 | 100 | 99.8 | 100 | 100 | 100 | 100 | 100 | |||
10,000 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | |||
0.6 | 500 | 10.1 | 55.0 | 41.9 | 16.1 | 62.4 | 56.9 | 5.8 | 56.6 | 45.3 | 55.2 | 41.1 | 55.9 | ||
1000 | 47.9 | 91.9 | 85.4 | 72.8 | 89.1 | 86.1 | 36.3 | 91.8 | 83.2 | 90.8 | 72.2 | 84.1 | |||
2000 | 91.2 | 99.9 | 99.6 | 99.7 | 99.6 | 99.4 | 88.9 | 99.9 | 99.6 | 99.9 | 97.5 | 99.2 | |||
4000 | 99.7 | 100 | 100 | 100 | 100 | 100 | 99.8 | 100 | 100 | 100 | 100 | 100 | |||
10,000 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | |||
0 | 0 | 500 | 8.5 | 90.8 | 73.3 | 81.2 | 65.6 | 75.0 | 4.3 | 66.9 | 27.4 | 33.0 | 29.0 | 41.8 | |
1000 | 21.0 | 99.7 | 97.3 | 99.2 | 91.3 | 96.1 | 11.7 | 92.2 | 59.5 | 72.9 | 52.6 | 67.5 | |||
2000 | 35.3 | 100 | 100 | 100 | 99.9 | 100 | 23.8 | 99.9 | 95.8 | 99.3 | 89.4 | 96.4 | |||
4000 | 54.7 | 100 | 100 | 100 | 100 | 100 | 45.9 | 100 | 100 | 100 | 99.9 | 100 | |||
10,000 | 83.0 | 100 | 100 | 100 | 100 | 100 | 78.1 | 100 | 100 | 100 | 100 | 100 | |||
0.6 | 500 | 7.3 | 83.0 | 30.6 | 9.3 | 60.8 | 31.8 | 3.8 | 67.8 | 26.8 | 33.9 | 29.3 | 42.7 | ||
1000 | 17.3 | 97.9 | 85.4 | 80.0 | 83.1 | 78.0 | 11.3 | 92.4 | 60.0 | 73.7 | 52.8 | 68.3 | |||
2000 | 33.1 | 100 | 99.7 | 99.9 | 98.7 | 99.0 | 24.8 | 99.9 | 96.0 | 99.5 | 90.4 | 96.5 | |||
4000 | 48.5 | 100 | 100 | 100 | 100 | 100 | 48.7 | 100 | 100 | 100 | 99.9 | 100 | |||
10,000 | 74.0 | 100 | 100 | 100 | 100 | 100 | 77.8 | 100 | 100 | 100 | 100 | 100 |
Par | p | Est | DM | WLS | BNO | BPE | BBB | BBC |
---|---|---|---|---|---|---|---|---|
2 | 0.43 | [0.30, 0.55] | [0.30, 0.55] | [0.31, 0.55] | [0.30, 0.54] | [0.31, 0.55] | [0.31, 0.55] | |
1 | 0.49 | [0.34, 0.64] | [0.36, 0.62] | [0.37, 0.61] | [0.34, 0.58] | [0.40, 0.64] | [0.40, 0.63] | |
0.5 | 0.50 | [0.34, 0.66] | [0.38, 0.63] | [0.38, 0.63] | [0.35, 0.60] | [0.41, 0.66] | [0.41, 0.66] | |
0 | 0.51 | [−0.05, 1.08] | [0.37, 0.65] | [0.36, 0.66] | [0.34, 0.65] | [0.37, 0.68] | [0.39, 0.68] | |
2 | 1.14 | [1.04, 1.24] | [1.04, 1.24] | [1.04, 1.24] | [1.05, 1.25] | [1.03, 1.23] | [1.05, 1.24] | |
1 | 1.17 | [1.03, 1.30] | [1.06, 1.28] | [1.06, 1.28] | [1.05, 1.26] | [1.07, 1.28] | [1.08, 1.31] | |
0.5 | 1.18 | [0.99, 1.37] | [1.06, 1.30] | [1.06, 1.30] | [1.04, 1.27] | [1.08, 1.32] | [1.08, 1.34] | |
0 | 1.18 | [0.49, 1.87] | [1.06, 1.30] | [1.01, 1.35] | [1.00, 1.34] | [1.02, 1.36] | [1.02, 1.37] |
Par | p | Est | DM | WLS | BNO | BPE | BBB | BBC |
---|---|---|---|---|---|---|---|---|
2 | 0.44 | [0.17, 0.72] | [0.17, 0.72] | [0.16, 0.73] | [0.16, 0.73] | [0.16, 0.73] | [0.17, 0.74] | |
1 | 0.30 | [0.04, 0.57] | [0.08, 0.52] | [0.07, 0.54] | [0.12, 0.58] | [0.03, 0.49] | [0.04, 0.50] | |
0.5 | 0.28 | [−0.10, 0.67] | [0.06, 0.50] | [0.03, 0.53] | [0.08, 0.59] | [−0.03, 0.48] | [0.00, 0.47] | |
0 | 0.28 | [−14.10, 14.65] | [0.06, 0.49] | [−0.01, 0.56] | [0.03, 0.58] | [−0.03, 0.52] | [0.01, 0.56] | |
2 | 1.28 | [1.06, 1.51] | [1.06, 1.51] | [1.04, 1.52] | [1.08, 1.55] | [1.02, 1.49] | [1.07, 1.54] | |
1 | 1.17 | [0.77, 1.58] | [0.94, 1.41] | [0.94, 1.41] | [0.99, 1.47] | [0.88, 1.36] | [0.94, 1.36] | |
0.5 | 1.14 | [0.27, 2.01] | [0.89, 1.39] | [0.87, 1.41] | [0.95, 1.48] | [0.80, 1.33] | [0.85, 1.35] | |
0 | 1.12 | [−0.93, 3.17] | [0.92, 1.32] | [0.78, 1.46] | [0.89, 1.53] | [0.71, 1.36] | [0.87, 1.46] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Robitzsch, A. Assessing Standard Error Estimation Approaches for Robust Mean-Geometric Mean Linking. AppliedMath 2025, 5, 86. https://doi.org/10.3390/appliedmath5030086
Robitzsch A. Assessing Standard Error Estimation Approaches for Robust Mean-Geometric Mean Linking. AppliedMath. 2025; 5(3):86. https://doi.org/10.3390/appliedmath5030086
Chicago/Turabian StyleRobitzsch, Alexander. 2025. "Assessing Standard Error Estimation Approaches for Robust Mean-Geometric Mean Linking" AppliedMath 5, no. 3: 86. https://doi.org/10.3390/appliedmath5030086
APA StyleRobitzsch, A. (2025). Assessing Standard Error Estimation Approaches for Robust Mean-Geometric Mean Linking. AppliedMath, 5(3), 86. https://doi.org/10.3390/appliedmath5030086