Symmetry Solutions and Conserved Quantities of a Generalized (2+1)-Dimensional Nonlinear Wave Equation
Abstract
:1. Introduction
2. Exact Solutions of Equation (5)
2.1. Lie Point Symmetries of (5)
2.2. Symmetry Reductions and Invariant Solutions of (5)
2.2.1. Solution Using Translation Symmetries , and
2.2.2. Invariant Solution of Equation (5) Using
2.2.3. Invariant Solution of Equation (5) Using
2.2.4. Invariant Solution of Equation (5) Using
3. Conserved Vectors via Ibragimov’s Theorem
4. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Yadav, S. QPDE: Quantum Neural Network Based Stabilization Parameter Prediction for Numerical Solvers for Partial Differential Equations. AppliedMath 2023, 3, 552–562. [Google Scholar] [CrossRef]
- Monyayi, V.T.; Goufo, E.F.D.; Toudjeu, I.T. Mathematical Analysis of a Navier–Stokes Model with a Mittag–Leffler Kernel. AppliedMath 2024, 4, 1230–1244. [Google Scholar] [CrossRef]
- Saheli, A.E.; Zogheib, B. Symmetry Analysis of the 3D Boundary-Layer Flow of a Non-Newtonian Fluid. AppliedMath 2024, 4, 1588–1599. [Google Scholar] [CrossRef]
- Sekhesa, T.M.; Nchejane, N.J.; Poka, W.D.; Kalebe, K.M. Exact solutions of the (1+1)-dissipative Westervelt equation using an optimal system of Lie sub-algebras and modified simple equation method. Partial Differ. Equ. Appl. Math. 2025, 14, 101178. [Google Scholar] [CrossRef]
- Chatziafratis, A.; Fokas, A.S.; Kalimeris, K. The Fokas method for evolution partial differential equations. Partial Differ. Equ. Appl. Math. 2025, 14, 101144. [Google Scholar] [CrossRef]
- Ahmed, D.M.; Mahmood, B.A.; Alalyani, A. On the solution of the coupled Whitham–Broer–Kaup problem using a hybrid technique for improved accuracy. Partial Differ. Equ. Appl. Math. 2025, 14, 101184. [Google Scholar] [CrossRef]
- Kudryashov, N.A.; Loguinova, N.B. Extended simplest equation method for nonlinear differential equations. Appl. Math. Comput. 2008, 205, 396–402. [Google Scholar] [CrossRef]
- Shqair, M. Solution of different geometries reflected reactors neutron diffusion equation using the homotopy perturbation method. Results Phys. 2019, 12, 61–66. [Google Scholar] [CrossRef]
- Wazwaz, A.M. The Tanh and Sine-Cosine Method for Compact and Noncompact Solutions of Nonlinear Klein Gordon Equation. Appl. Math. Comput. 2005, 167, 1179–1195. [Google Scholar] [CrossRef]
- Gu, C.H. Soliton Theory and Its Application; Zhejiang Science and Technology Press: Hangzhou, China, 1990. [Google Scholar]
- Feng, Z. A note on “explicit exact solutions to the compound Burgers-Korteweg-de Vries equation”. Phy. Lett. 2003, 312, 396–402. [Google Scholar] [CrossRef]
- Hirota, R. The Direct Method in Soliton Theory; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Lie, S. Vorlesungen Über Differentialgleichungen mit Bekannten Infinitesimalen Transformation; Scheffers, G., Ed.; Teubner: Leipzig, Germany, 1891; reprint; Chelsea: New York, NY, USA, 1967. [Google Scholar]
- Matveev, V.B.; Salle, M.A. Darboux Transformations and Solitons; Springer: New York, NY, USA, 1991. [Google Scholar]
- Zhou, Y.; Wang, M.; Wang, Y. Periodic wave solutions to a coupled KdV equations with variable coefficients. Phys. Lett. A 2003, 308, 31–36. [Google Scholar] [CrossRef]
- Zhang, L.; Khalique, C.M. Classification and bifurcation of a class of second-order ODEs and its application to nonlinear PDEs. Discret. Contin. Dyn. Syst. Ser. S 2018, 11, 777–790. [Google Scholar] [CrossRef]
- Kudryashov, N.A. Simplest equation method to look for exact solutions of nonlinear differential equations. Chaos Solitons Fractals 2005, 24, 1217–1231. [Google Scholar] [CrossRef]
- Chen, Y.; Yan, Z. New exact solutions of (2+1)-dimensional Gardner equation via the new sine-Gordon equation expansion method. Chaos Solitons Fractals 2005, 26, 399–406. [Google Scholar] [CrossRef]
- Ma, M.A.; Abdeljabbar, A. Solving the (3+1)-dimensional generalized KP and BKP equations by the multi expfunction algorithm. Appl. Math. Comput. 2012, 218, 11871–11879. [Google Scholar]
- Wang, M. Exact solutions for a compound KdV-Burgers equation. Phy. Lett. 1996, 213, 279–287. [Google Scholar] [CrossRef]
- Wang, M.; Li, X.; Zhang, J. The (G′/G)—Expansion method and travelling wave solutions for linear evolution equations in mathematical physics. Phys. Lett. A 2005, 24, 1257–1268. [Google Scholar]
- Ablowitz, M.J.; Clarkson, P.A. Solitons, Nonlinear Evolution Equations and Inverse Scattering; Cambridge University Press: Cambridge, UK, 1991. [Google Scholar]
- Ovsiannikov, L.V. Group Analysis of Differential Equations; Academic Press: New York, NY, USA, 1982. [Google Scholar]
- Bluman, G.W.; Kumei, S. Symmetries and Differential Equations; Springer: New York, NY, USA, 1989. [Google Scholar]
- Olver, P.J. Applications of Lie Groups to Differential Equations, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 1993. [Google Scholar]
- Ibragimov, N.H. CRC Handbook of Lie Group Analysis of Differential Equations; CRC Press: Boca Raton, FL, USA, 1993; Volume 1–3. [Google Scholar]
- Ibragimov, N.H. Elementary Lie Group Analysis and Ordinary Differential Equations; John Wiley & Sons: Chichester, NY, USA, 1999. [Google Scholar]
- Noether, E. Invariante Variationsprobleme, Nachrichten der Königlichen Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, S. 235–257; English Translation. Transp. Theory Statist. Phys. 1971, 1, 186–207. [Google Scholar] [CrossRef]
- Leveque, R.J. Numerical Methods for Conservation Laws, 2nd ed.; Birkhäuser: Basel, Switzerland, 1992. [Google Scholar]
- Sarlet, W. Comment on ‘Conservation laws of higher order nonlinear PDEs and the variational conservation laws in the class with mixed derivatives’. J. Phys. A Math. Theor. 2010, 43, 458001. [Google Scholar] [CrossRef]
- Kopcasız, B.; Yasar, E. Inquisition of optical soliton structure and qualitative analysis for the complex-coupled Kuralay system. Mod. Phys. Lett. B 2025, 39, 2450512. [Google Scholar] [CrossRef]
- Yasar, E.; Yasar, E. Exact wave solutions and local conservation laws of a third-order Boussinesq system. Discrete Contin. Dyn. Syst.-S 2025, 18, 1075–1092. [Google Scholar] [CrossRef]
- Naz, R.; Hereman, W. Lie symmetries, closed-form solutions, and conservation laws of a constitutive equation modeling stress in elastic materials. Partial Differ. Equ. Appl. Math. 2025, 13, 101054. [Google Scholar] [CrossRef]
- Gandarias, M.L.; Raza, N.; Umair, M.; Almalki, Y. Dynamical visualization and qualitative analysis of the (4+1)-dimensional KdV-CBS equation using Lie symmetry analysis. Mathematics 2024, 13, 89. [Google Scholar] [CrossRef]
- Márquez, A.P.; Recio, E.; Gandarias, M.L. Conservation laws and exact solutions of a nonlinear acoustics equation by classical symmetry reduction. Chaos Solitons Fractals 2025, 191, 115925. [Google Scholar] [CrossRef]
- Ibragimov, N.H. A new conservation theorem. J. Math. Anal. Appl. 2007, 333, 311–328. [Google Scholar] [CrossRef]
- Hua, Y.F.; Guo, B.L.; Ma, W.X.; Lü, X. Interaction behavior associated with a generalized (2+1)-dimensional Hirota bilinear equation for nonlinear waves. Appl. Math. Model. 2019, 74, 184–198. [Google Scholar] [CrossRef]
- Hosseini, K.; Mirzazadeh, M.; Aligoli, M.; Eslami, M.; Liu, J.G. Rational wave solutions to a generalized (2+1)-dimensional Hirota bilinear equation. Math. Model. Nat. Phenom. 2020, 15, 61. [Google Scholar] [CrossRef]
- Zhao, Z.; He, L. M-lump, high-order breather solutions and interaction dynamics of a generalized (2+1)-dimensional nonlinear wave equation. Nonlinear Dyn. 2020, 100, 2753–2765. [Google Scholar] [CrossRef]
- Zhao, X.; Tian, B.; Tian, H.Y.; Yang, D.Y. Bilinear Bäcklund transformation, Lax pair and interactions of nonlinear waves for a generalized (2+1)-dimensional nonlinear wave equation in nonlinear optics/fluid mechanics/plasma physics. Nonlinear Dyn. 2021, 103, 1785–1794. [Google Scholar] [CrossRef]
- He, L.; Zhang, J.; Zhao, Z. Resonance Y-type soliton, hybrid and quasi-periodic wave solutions of a generalized (2+1)-dimensional nonlinear wave equation. Nonlinear Dyn. 2021, 106, 2515–2535. [Google Scholar] [CrossRef]
- Chai, X.; Zhang, Y. The ∂¯-dressing method for (2+1)-dimensional equation and combinatorics. arXiv 2023, arXiv:2311.07196. [Google Scholar] [CrossRef]
- Li, J.; Xu, C.; Lu, J. The exact solutions to the generalized (2+1)-dimensional nonlinear wave equation. Results Phys. 2024, 58, 107506. [Google Scholar] [CrossRef]
- Kudryashov, N.A. Analytical Theory of Nonlinear Differential Equations; Institute of Computer Investigations: Moskow/Igevsk, Russia, 2004. [Google Scholar]
- Gradshteyn, I.S.; Ryzhik, I.M. Table of Integrals, Series, and Products, 7th ed.; Academic Press: New York, NY, USA, 2007. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khalique, C.M.; Mehmood, A. Symmetry Solutions and Conserved Quantities of a Generalized (2+1)-Dimensional Nonlinear Wave Equation. AppliedMath 2025, 5, 61. https://doi.org/10.3390/appliedmath5020061
Khalique CM, Mehmood A. Symmetry Solutions and Conserved Quantities of a Generalized (2+1)-Dimensional Nonlinear Wave Equation. AppliedMath. 2025; 5(2):61. https://doi.org/10.3390/appliedmath5020061
Chicago/Turabian StyleKhalique, Chaudry Masood, and Anila Mehmood. 2025. "Symmetry Solutions and Conserved Quantities of a Generalized (2+1)-Dimensional Nonlinear Wave Equation" AppliedMath 5, no. 2: 61. https://doi.org/10.3390/appliedmath5020061
APA StyleKhalique, C. M., & Mehmood, A. (2025). Symmetry Solutions and Conserved Quantities of a Generalized (2+1)-Dimensional Nonlinear Wave Equation. AppliedMath, 5(2), 61. https://doi.org/10.3390/appliedmath5020061