Generalized Stability of a General Septic Functional Equation
Abstract
:1. Introduction
2. Stability of a General Septic Functional Equation
- Step 1.
- Let and , and let satisfy
- Step 2.
- Now, we define the desired general septic mapping F for all cases.
- (1)
- Let satisfy the Condition (8) and let , , , , , and be mappings defined by (19). We put a general septic mapping by
- (2)
- Let satisfy the Condition (9) for some and let , be mappings defined by (19). Putting a general septic mapping by
- (3)
- Let satisfy the Condition (10) and let , , , , , and be mappings defined by (19). Putting a general septic mapping
3. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ulam, S.M. A Collection of Mathematical Problems; Interscience: New York, NY, USA, 1960. [Google Scholar]
- Hyers, D.H. On the stability of the linear functional equation. Proc. Natl. Acad. Sci. USA 1941, 27, 222–224. [Google Scholar] [CrossRef]
- Rassias, T.M. On the stability of the linear mapping in Banach spaces. Proc. Amer. Math. Soc. 1978, 72, 297–300. [Google Scholar] [CrossRef]
- Găvruta, P. A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings. J. Math. Anal. Appl. 1994, 184, 431–436. [Google Scholar] [CrossRef]
- Skof, F. Local properties and approximations of operators. Rend. Sem. Mat. Fis. Milano 1983, 53, 113–129. [Google Scholar] [CrossRef]
- Cholewa, P.W. Remarks on the stability of functional equations. Aequationes Math. 1984, 27, 76–86. [Google Scholar] [CrossRef]
- Guariglia, E.; Tamilvanan, K. On the stability of radical septic functional equations. Mathematics 2020, 8, 2229. [Google Scholar] [CrossRef]
- Jakhar, J.; Sharma, S.; Jakhar, J.; Yousif, M.A.; Mohammed, P.O.; Lupas, A.A.; Chorfi, N. Orthogonal stability and solution of a three-variable functional equation in extended Banach spaces. Mathematics 2024, 12, 2868. [Google Scholar] [CrossRef]
- Jun, K.W.; Kim, H.M. The generalized Hyers–Ulam–Rassias stability of a cubic functional equation. J. Math. Anal. Appl. 2002, 274, 867–878. [Google Scholar] [CrossRef]
- Kaiser, Z. On stability of the monomial functional equation in normed spaces over fields with valuation. J. Math. Anal. Appl. 2006, 322, 1188–1198. [Google Scholar] [CrossRef]
- Gilányi, A. On Hyers-Ulam stability of monomial functional equations. Abh. Math. Sem. Univ. Hamburg 1998, 68, 321–328. [Google Scholar] [CrossRef]
- Gilányi, A. Hyers-Ulam stability of monomial functional equations on a general domain. Proc. Natl. Acad. Sci. USA 1999, 96, 10588–10590. [Google Scholar] [CrossRef] [PubMed]
- Gilányi, A. On the stability of monomial functional equations. Publ. Math. Debrecen 2000, 56, 201–212. [Google Scholar] [CrossRef]
- Cădariu, L.; Radu, V. The fixed points method for the stability of some functional equations. Carpathian J. Math. 2007, 23, 63–72. [Google Scholar]
- Lee, Y.-H. Stability of a monomial functional equation on a restricted domain. Mathematics 2017, 5, 53. [Google Scholar] [CrossRef]
- Hyers, D.H. Transformations with bounded m-th differences. Pacific J. Math. 1961, 11, 591–602. [Google Scholar] [CrossRef]
- Albert, M.; Baker, J.A. Functions with bounded nth differences. Ann. Polon. Math. 1983, 43, 93–103. [Google Scholar] [CrossRef]
- Jin, S.S.; Lee, Y.-H. Hyperstability of a general quintic functional equation and a general septic functional equation. J. Chungcheong Math. Soc. 2023, 36, 107–123. [Google Scholar]
- Jin, S.S.; Lee, Y.-H. Generalized stability of a general cubic functional equation. J. Chungcheong Math. Soc. 2024, 37, 189–200. [Google Scholar]
- Jin, S.S.; Lee, Y.-H. Generalized stability of a general quartic functional equation. Asian Res. J. Math. 2024, 20, 96–107. [Google Scholar] [CrossRef]
- Jin, S.S.; Lee, Y.-H. Generalized stability of a general quintic functional equation. J. Adv. Math. Comput. Sci. 2024, 39, 152–163. [Google Scholar] [CrossRef]
- Jin, S.S.; Lee, Y.-H. Hyers-Ulam-Rassias stability of a general septic functional equation. J. Adv. Math. Comput. Sci. 2022, 37, 12–28. [Google Scholar] [CrossRef]
- Chang, I.-S.; Lee, Y.-H.; Roh, J. Nearly general septic functional equation. J. Funct. Spaces 2021, 2021, 5643145. [Google Scholar] [CrossRef]
- Jung, S.M.; Lee, Y.H.; Roh, J. A uniqueness theorem for stability problems of functional equations. Symmetry 2024, 16, 1298. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, S.-S.; Lee, Y.-H. Generalized Stability of a General Septic Functional Equation. AppliedMath 2025, 5, 14. https://doi.org/10.3390/appliedmath5010014
Jin S-S, Lee Y-H. Generalized Stability of a General Septic Functional Equation. AppliedMath. 2025; 5(1):14. https://doi.org/10.3390/appliedmath5010014
Chicago/Turabian StyleJin, Sun-Sook, and Yang-Hi Lee. 2025. "Generalized Stability of a General Septic Functional Equation" AppliedMath 5, no. 1: 14. https://doi.org/10.3390/appliedmath5010014
APA StyleJin, S.-S., & Lee, Y.-H. (2025). Generalized Stability of a General Septic Functional Equation. AppliedMath, 5(1), 14. https://doi.org/10.3390/appliedmath5010014