Combinatorial Identities with Multiple Harmonic-like Numbers
Abstract
:1. Preliminaries
2. Binomial Sums Involving
3. Combinatorial Identities from Partial Summation
4. More Identities Involving and Other Sequences
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cheon, G.S.; El-Mikkawy, M.E.A. Generalized harmonic number identities and a related matrix representation. J. Korean Math. Soc. 2007, 44, 487–498. [Google Scholar] [CrossRef]
- Cheon, G.S.; El-Mikkawy, M.E.A. Generalized harmonic numbers with Riordan arrays. J. Number Theory 2008, 128, 413–425. [Google Scholar] [CrossRef]
- Kargin, L.; Can, M. Harmonic number identities via polynomials with r-Lah coefficients. Comptes Rendus Math. Acad. Sci. Paris 2020, 358, 535–550. [Google Scholar] [CrossRef]
- Chen, Y.; Guo, D. Formulae concerning multiple harmonic-like numbers. Contrib. Math. 2023, 8, 24–29. [Google Scholar] [CrossRef]
- Chen, Y.; Guo, D. Summation formulas for certain combinatorial sequences. Mathematics 2024, 12, 1210. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Choi, J. Series Associated with the Zeta and Related Functions; Springer Science+Media, B.V.: Dordrecht, The Netherlands, 2001. [Google Scholar]
- Boyazhiev, K.N. Notes on the Binomial Transform; World Scientific: Singapore, 2018. [Google Scholar]
- Prodinger, H. Some information about the binomial transform. Fibonacci Quart. 1994, 32, 412–414. [Google Scholar]
- Boyadzhiev, K.N. Harmonic number identities via Euler’s transform. J. Integer Seq. 2009, 12, 09.6.1. [Google Scholar]
- Adegoke, K.; Frontczak, R. Some notes on an identity of Frisch. arXiv 2024, arXiv:2405.10978. [Google Scholar]
- Koshy, T. Fibonacci and Lucas Numbers with Applications; Wiley-Interscience: Hoboken, NJ, USA, 2001. [Google Scholar]
- Vajda, S. Fibonacci and Lucas Numbers, and the Golden Section: Theory and Applications; Dover Press: Mineola, NY, USA, 2008. [Google Scholar]
- Kollár, R. Incomplete finite binomial sums of Harmonic numbers. J. Integer Seq. 2024, 27, 24.2.1. [Google Scholar]
- Boyadzhiev, K.N.; Frontczak, R. Hadamard product of series with special numbers. Funct. Approx. Comment. Math. 2023, 68, 231–247. [Google Scholar] [CrossRef]
- Coppo, M.A.; Young, P.T. On shifted Mascheroni series and hyperharmonic numbers. J. Number Theory 2016, 169, 1–20. [Google Scholar] [CrossRef]
- Dil, A.; Boyadzhiev, K.N. Euler sums of hyperharmonic numbers. J. Number Theory 2015, 147, 490–498. [Google Scholar] [CrossRef]
- Chen, H. Interesting series associated with central binomial coefficients, Catalan numbers and harmonic numbers. J. Integer Seq. 2016, 19, 16.1.5. [Google Scholar]
- Gould, H.W. Combinatorial Identities, A Standardized Set of Tables Listing 500 Binomial Coefficient Summations, Revised Edition; National Security Agency: Morgantown, WV, USA, 1972. [Google Scholar]
- Peralta, D.; Quintana, Y.; Wani, S.A. Mixed-type hypergeometric BernoulliâGegenbauer polynomials. Mathematics 2023, 11, 3920. [Google Scholar] [CrossRef]
- Chu, W. Further identities on Catalan numbers. Discrete Math. 2018, 341, 3159–3164. [Google Scholar] [CrossRef]
- Daboul, S.; Mangaldan, J.; Spivey, M.Z.; Taylor, P.J. The Lah numbers and the nth derivative of e1/x. Math. Mag. 2013, 86, 39–47. [Google Scholar] [CrossRef]
- Wang, X.; Chu, W. Reciprocal relations of Bernoulli and Euler numbers/polynomials. Integral Transform. Spec. Funct. 2018, 29, 831–841. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adegoke, K.; Frontczak, R. Combinatorial Identities with Multiple Harmonic-like Numbers. AppliedMath 2024, 4, 986-998. https://doi.org/10.3390/appliedmath4030053
Adegoke K, Frontczak R. Combinatorial Identities with Multiple Harmonic-like Numbers. AppliedMath. 2024; 4(3):986-998. https://doi.org/10.3390/appliedmath4030053
Chicago/Turabian StyleAdegoke, Kunle, and Robert Frontczak. 2024. "Combinatorial Identities with Multiple Harmonic-like Numbers" AppliedMath 4, no. 3: 986-998. https://doi.org/10.3390/appliedmath4030053
APA StyleAdegoke, K., & Frontczak, R. (2024). Combinatorial Identities with Multiple Harmonic-like Numbers. AppliedMath, 4(3), 986-998. https://doi.org/10.3390/appliedmath4030053