Series Solution Method for Solving Sequential Caputo Fractional Differential Equations
Abstract
:1. Introduction
2. Preliminary Results
- (a)
- Constant coefficients;
- (b)
- Variable coefficients.
3. Main Results
- and .
- Two real roots of the quadratic equation are and respectively such that
- Two real roots of the quadratic equation are and respectively such that
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Denton, Z.; Vatsala, A.S. Existence in the Large for Caputo Fractional Multi-Order Systems with Initial Conditions. J. Found. 2023, 3, 260–274. [Google Scholar] [CrossRef]
- Diethelm, K. The Analysis of Fractional Differential Equations; Springer: Berlin/Heidelberg, Germany, 2004. [Google Scholar]
- Diethelm, K.; Ford, N.J. Analysis of fractional differential equations. JMAA 2002, 265, 229–248. [Google Scholar] [CrossRef]
- Diethelm, K.; Ford, N.J. Multi-order fractional differential equations and their numerical solution. AMC 2004, 154, 621–640. [Google Scholar] [CrossRef]
- Gorenflo, R.; Kilbas, A.A.; Mainardi, F.; Rogosin, S.V. Mittag-Leffler Functions, Related Topic and Applications; Springer Monographs in Mathematics; Springer: Berlin/Heidelberg, Germany, 2014; 443p. [Google Scholar]
- Kilbas, A.A.; Srivsatava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: North Holland, The Netherlands, 2006; Volume 204. [Google Scholar]
- Kiryakova, V. Generalized Fractional Calculus and Applications; Pitman Research Notes in Mathematics Series; Longman-Wiley: New York, NY, USA, 1994; Volume 301. [Google Scholar]
- Kiskinova, H.; Petkovab, M.; Zahariev, A. Remarks on the Coincidence of the Left-side and Right-side Fractional Derivatives on an Interval and Some Consequences. AIP Conf. Proc. 2021, 2333, 080003. [Google Scholar]
- Lakshmikantham, V.; Leela, S.; Vasundhara, D.J. Theory of Fractional Dynamic Systems; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Lakshmikantham, V.; Vatsala, A.S. Theory of fractional differential inequalities and Applications. Commun. Appl. Anal. 2007, 11, 395–402. [Google Scholar]
- Lakshmikantham, V.; Vatsala, A.S. Basic theory of fractional differential equations. Nonlinear Anal. TMAA 2008, 69, 2677–2682. [Google Scholar] [CrossRef]
- Podlubny, I. Fractional Differential Equations; Academic Press: San Diego, CA, USA, 1999. [Google Scholar]
- Ross, B. Fractional Calculus and its Applications; Lecture Notes in Mathematics; Dold, A., Eckmann, B., Eds.; Proceedings, Springer: New York, NY, USA, 1974. [Google Scholar]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives, Theory and Applications; Gordon and Breach: Yverdon, Switzerland, 1993. [Google Scholar]
- Oldham, B.; Spanier, J. The Fractional Calculus; Academic Press: New York, NY, USA; London, UK, 1974. [Google Scholar]
- Diethelm, K.; Freed, A.D. On the Solution of Nonlinear Fractional Differential Equations Used in the Modeling of Viscoplasticity. In Scientific Computing in Chemical Engineering II: Computational Fluid Dynamics, Reaction Engineering, and Molecular Properties; Keil, F., Mackens, W., Vob, H., Werther, J., Eds.; Springer: Berlin/Heidelberg, Germany, 1999; pp. 217–224. [Google Scholar]
- Ding, Y.; Yea, H. A fractional-order differential equation model of HIV infection of CD4C T-cells. Math. Comput. Model. 2009, 50, 386–392. [Google Scholar] [CrossRef]
- Fallahgoul, H.; Focardi, S.; Fabozzi, F. Fractional Calculus and Fractional Processes with Applications to Financial Economics; Theory and Application; Academic Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Garg, V.; Singh, K. An Improved Grunwald-Letnikov Fractional Differential Mask for Image Texture Enhancement. (IJACSA) Int. J. Adv. Comput. Sci. Appl. 2012, 3, 130–135. [Google Scholar] [CrossRef]
- Glöckle, W.G.; Nonnenmacher, T.F. A fractional calculus approach to self similar protein dynamics. Biophy. J. 1995, 68, 46–53. [Google Scholar] [CrossRef]
- Javidi, M.; Ahmad, B. Dynamic analysis of time fractional order phytoplankton-toxic phytoplankton-zooplankton system. Ecol. Model. 2015, 318, 8–18. [Google Scholar] [CrossRef]
- Huo, J.; Zhao, H.; Zhu, L. The effect of vaccines on backward bifurcation in a fractional order HIV model. Nonlinear Anal. Real World Appl. 2015, 26, 289–305. [Google Scholar] [CrossRef]
- Klimek, M. Fractional Sequential Mechanics Models with Symmetric Fractional Derivative. Czechoslov. J. Phys. 2001, 51, 1348–1354. [Google Scholar] [CrossRef]
- De Leon, C.V. Volterra type Lyapunov functions for fractional order epidemic systems. Commun. Nonlinear Sci. Numer. Simul. 2015, 24, 75–85. [Google Scholar] [CrossRef]
- Metzler, R.; Schick, W.; Kilian, H.G.; Nonnenmacher, T.F. Relaxation in filled polymers: A fractional calculus approach. J. Chem. Phy. 1995, 103, 7180–7186. [Google Scholar] [CrossRef]
- Paredes, G.E. Fractional-Order Models for Nuclear Reactor Analysis; Woodhead Publishing: Sawston, UK, 2020. [Google Scholar]
- Chen, Q.-L.; Huang, G.; Zhang, X.-Q. A Fractional Differential Approach to Low Contrast Image Enhancement. Int. J. Knowl. Lang. Process. 2012, 3, 20–29. [Google Scholar]
- Uchaikin, V.V. Fractional Derivatives for Physicists and Engineers Volume I Background and Theory Volume II Applications; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Vatsala, A.S.; Pageni, G. Caputo Sequential Fractional Differential Equations with Applications. In Synergies in Analysis, Discrete Mathematics, Soft Computing and Modelling; Springer Nature Singapore: Singapore, 2023; pp. 83–102. [Google Scholar]
- Wang, S.; Wang, Y.P.Q.; Miao, H.; Brown, A.N.; Rong, L. Modeling the viral dynamics of SARS-CoV-2 infection. Math. Biosci. 2020, 328, 108438. [Google Scholar] [CrossRef] [PubMed]
- Haubold, H.J.; Mathai, A.M.; Saxena, R.K. Mittag-Leffler Functions and Their Applications. J. Appl. Math. 2011, 2011, 298628. [Google Scholar] [CrossRef]
- Almeida, R.; Bastos, N.R.O.; Monteiro, M.T.T. Modeling some real phenomena by fractional differential equations. In Mathematical Methods in the Applied Sciences; Wiley Online Library: Hoboken, NJ, USA, 2015. [Google Scholar] [CrossRef]
- Chikrii, A.; Matychyn, I. Riemann Liouville, Caputo and Sequential Fractional Derivative in Differential Games. In Advances in Dynamic Games: Theory, Applications, and Numerical Methods for Differential and Stochastic Games; Birkhäuser: Basel, Switzerland, 2011; pp. 61–81. [Google Scholar]
- Can, N.H.; Nikan, O.; Rasoulizadeh, M.N.; Jafari, H.; Gasimov, Y.S. Numerical computation of the time non-linear fractional generalized equal width model arising in shallow water channel. Therm. Sci. 2020, 24, 49–58. [Google Scholar] [CrossRef]
- Nikan, O.; Molavi-Arabshai, S.M.; Jafari, H. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discret. Contin. Dyn. Syst. S 2021, 14, 3685. [Google Scholar] [CrossRef]
- Qian, D.; Li, C. Stability Analysis of the Fractional Differential Systems with Miller Ross Sequential Derivative. In Proceedings of the 2010 8th World Congress on Intelligent Control and Automation, Jinan, China, 7–9 July 2010; pp. 213–219. [Google Scholar]
- Vatsala, A.S.; Sowmya, M. Laplace Transform Method for Linear Sequential Riemann-Liouville and Caputo Fractional Differential Equations. Aip Conf. Proc. 2017, 1798, 020171. [Google Scholar]
- Vatsala, A.S.; Sambandham, B. Laplace Transform Method for Sequential Caputo Fractional Differential Equations. Math. Eng. Sci. Aerosp. 2016, 7, 339–347. [Google Scholar]
- Vatsala, A.S.; Pageni, G.; Vijesh, V.A. Analysis of sequential Caputo fractional differential equations versus non-sequential Caputo fractional differential equations with applications. Foundations 2022, 2, 1129–1142. [Google Scholar] [CrossRef]
- Pageni, G.; Vatsala, A.G. Study of two system of Caputo fractional differential equations with initial conditions via Laplace transform method. Neural Parallel Sci. Comput 2021, 29, 69–83. [Google Scholar] [CrossRef]
- Pageni, G.; Vatsala, A.S. Study of Three Systems of non-linear Caputo Fractional Differential Equations with initial conditions and Applications. Neural Parallel Sci. Comput 2021, 29, 211–229. [Google Scholar] [CrossRef]
- Sambandham, B.; Vatsala, A.S. Basic Results for Sequential Caputo Fractional Differential Equations. Mathematics 2015, 3, 76–91. [Google Scholar] [CrossRef]
- Sambandham, B.; Vatsala, A.S. Numerical Results for Linear Caputo Fractional Differential Equations with Variable Coefficients and Applications. Neural Parallel Sci. Comput. 2015, 23, 253–266. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vatsala, A.S.; Pageni, G. Series Solution Method for Solving Sequential Caputo Fractional Differential Equations. AppliedMath 2023, 3, 730-740. https://doi.org/10.3390/appliedmath3040039
Vatsala AS, Pageni G. Series Solution Method for Solving Sequential Caputo Fractional Differential Equations. AppliedMath. 2023; 3(4):730-740. https://doi.org/10.3390/appliedmath3040039
Chicago/Turabian StyleVatsala, Aghalaya S., and Govinda Pageni. 2023. "Series Solution Method for Solving Sequential Caputo Fractional Differential Equations" AppliedMath 3, no. 4: 730-740. https://doi.org/10.3390/appliedmath3040039
APA StyleVatsala, A. S., & Pageni, G. (2023). Series Solution Method for Solving Sequential Caputo Fractional Differential Equations. AppliedMath, 3(4), 730-740. https://doi.org/10.3390/appliedmath3040039