Computer-Algebra-Software-Assisted Calculus Instruction, Not Calculus for Dummies: Bespoke Applications Necessitate Theory
Abstract
:1. Introduction
2. Materials and Methods: Spatial Statistics in a Nutshell
3. Results
3.1. A Differential Calculus Example: An Incorrect Derivative
LINE | COMPUTER CODE |
1 | PROC NLIN DATA = STEP1 METHOD = MARQUARDT MAXITER = 2000; |
2 | PARMS RHOY = 0.0 B0 = 0; |
3 | BOUNDS − 1 < RHOY < 1; |
4 | ARRAY LAMBDAJ{400} TLAM1-TLAM400; |
5 | JACOB = 0; |
6 | DERJ = 0; |
7 | DO I = 1 TO 400; |
8 | JACOB = JACOB + LOG(1 − RHOY × LAMBDAJ{I}); |
9 | DERJ = DERJ + -LAMBDAJ{I}/(1 − RHOY × LAMBDAJ{I}); |
10 | END; |
11 | J = EXP(JACOB/400); |
12 | DERJ = −DERJ/400; |
13 | ZY = Y/J; |
14 | MODEL ZY = (RHOY × WY + B0 × (1 − RHOY))/J; |
15 | DER.RHOY = ((RHOY × WY + B0 × (1 − RHOY) − Y) × DERJ + WY − B0)/J; |
16 | RUN; |
derivative | range of | ||
correct | 0.492 | 0.328–0.617 | 0.002 |
incorrect | 0.823 | 0.629–0.968 | 0.005 |
3.2. An Integral Calculus Example: The Jacobian of a Transformation
derivative | range of | ||
correct | 0.948 | 0.916–0.977 | 0.0002 |
incorrect | 1.058 | 1.012–1.104 | 0.0004 |
4. Discussion
5. Conclusions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mathematical Association of America (MAA) Panel on Statistics. Introductory Statistics without Calculus; Committee on the Undergraduate Program in Mathematics: Berkeley, CA, USA, 1972. [Google Scholar]
- Shockley, J. The Brief Calculus: With Applications in the Social Sciences; Holt, Rinehart and Winston: New York, NY, USA, 1971. [Google Scholar]
- Saltz, D. A Short Calculus: An Applied Approach, 2nd ed.; Goodyear Publishing: Santa Monica, CA, USA, 1977. [Google Scholar]
- Newmark, J. The Usefulness of Calculus for the Behavioral, Life, and Managerial Sciences; Canfield Press: San Francisco, CA, USA, 1978. [Google Scholar]
- Bittinger, M.; Brand, N.; Quintanilla, J. Calculus for the Life Sciences, 1st ed.; Pearson/Addisson WesIey: Boston, MA, USA, 2006. [Google Scholar]
- Frey, J. Technology and mathematics education: A survey of recent developments and important problems. Educ. Stud. Math. 1989, 20, 237–272. [Google Scholar]
- Kabaca, T.; Aksoy, Y.; Aktumen, M.; Mirasyediglu, S. The use of computer algebra systems in calculus teaching: Principles and sample applications. In Technology Education and Development; Lazinica, A., Calafate, C., Eds.; InTech: Rijeka, Croatia, 2009; Chapter 30; pp. 479–500. Available online: http://www.intechopen.com/books/technology-education-and-development/the-use-of-computer-algebrasystems-in-calculus-teaching-principles-and-sample-applications (accessed on 19 May 2022).
- Pierce, R.; Ball, L. Perceptions that may affect teachers’ intention to use technology in secondary mathematics classes. Educ. Stud. Math. 2009, 71, 299–317. [Google Scholar] [CrossRef]
- Bressoud, D.; Mesa, V.; Rasmussen, C. Insights and Recommendations from the MAA National Study of College Calculus; The Mathematical Association of America: Washington, DC, USA, 2015. [Google Scholar]
- Karjanto, N.; Husain, H.S. Not another computer algebra system: Highlighting wxMaxima in calculus. Mathematics 2021, 9, 1317. [Google Scholar] [CrossRef]
- Slavíčková, M. Implementation of digital technologies into pre-service mathematics teacher preparation. Mathematics 2021, 9, 1319. [Google Scholar] [CrossRef]
- Ziatdinov, R.; Valles, J. Synthesis of modeling, Visualization, and programming in GeoGebra as an effective approach for teaching and learning STEM topics. Mathematics 2022, 10, 398. [Google Scholar] [CrossRef]
- Amado, N.; Domingos, A.; Jones, K. Editorial: Re-visioning teaching and learning with technology in mathematics: Selected papers from ICTMT12. Teach. Math. Its Appl. 2016, 35, 51–52. [Google Scholar] [CrossRef] [Green Version]
- Wolfram. Mathematica Quick Revision History, Mathematica latest version; Wolfram Worldwide Headquarters: Champaign, IL, USA, 2022; Available online: http://www.wolfram.com/mathematica/quick-revision-history.html (accessed on 19 May 2022).
- MapleSoft. Maple User Manual: Maple 18; Waterloo Maple Inc.: Waterloo, ON, Canada, 2021; Available online: https://www.maplesoft.com/documentation_center/maple2021/UserManual.pdf (accessed on 19 May 2022).
- Cipra, B. How number theory got the best of the Pentium chip. Science 1995, 267, 175. Available online: http://www.sciencemag.org/content/267/5195/175 (accessed on 20 May 2022). [CrossRef] [PubMed]
- Gelfand, A.; Diggle, P.; Fuentes, M.; Guttorp, P. (Eds.) Handbook of Spatial Statistics; CRC Press: Boca Raton, FL, USA, 2010. [Google Scholar]
- Besag, J. Spatial interaction and the statistical analysis of lattice systems. J. R. Stat. Soc. Ser. B Stat. Method 1974, 36, 192–225. [Google Scholar] [CrossRef]
- Ward, M.; Ahlquist, J. Maximum Likelihood for the Social Sciences: Strategies for Analysis; Cambridge University Press: New York, NY, USA, 2018. [Google Scholar]
- SAS Institute Inc. The NLIN procedure. In SAS/STAT(R) 15.1 User’s Guide; SAS Institute Inc.: Cary, NC, USA, 2022; Available online: https://documentation.sas.com/doc/en/pgmsascdc/v_027/statug/titlepage.htm?fromDefault= (accessed on 19 May 2022).
- Johnson, R.; Kiokemeister, F. Calculus with Analytic Geometry, 3rd ed.; Allyn and Bacon: Boston, MA, USA, 1965. [Google Scholar]
- Lindgren, B. Statistical Theory, 3rd ed.; Macmillan: New York, NY, USA, 1968. [Google Scholar]
- Wikipedia. List of Computer Algebra Systems. Available online: http://en.wikipedia.org/wiki/List_of_computer_algebra_systems (accessed on 31 May 2022).
- Longley, J. An appraisal of least squares programs for the electronic computer from the point of view of the user. J. Am. Stat. Assoc. 1967, 62, 819–841. [Google Scholar] [CrossRef]
- Allerbeck, K. Data analysis systems: A user’s point of view. Comput. Data Processing/Ordinat. Traitement Données 1971, 10, 23–35. [Google Scholar] [CrossRef]
- Beaton, A.; Rubin, D.; Barone, J. The acceptability of regression solutions: Another look at computational accuracy. J. Am. Stat. Assoc. 1976, 71, 158–168. [Google Scholar] [CrossRef]
- Wilkinson, L.; Dallal, G. Accuracy of sample moments calculations among widely used statistical programs. Am. Stat. 1977, 31, 128–131. [Google Scholar]
- IMSL. IMSL Fortran Library User’s Guide MATH/LIBRARY; Visual Numerics, Inc.: San Ramon, CA, USA, 2003; Volume 2. [Google Scholar]
- James, F.; Moneta, L. Review of high-quality random number generators. Comput. Softw. Big Sci. 2020, 4, 2. [Google Scholar] [CrossRef] [Green Version]
- Simon, D.; LeSage, J. Benchmarking numerical accuracy of statistical algorithms. Comput. Stat. Data Anal. 1988, 7, 197–209. [Google Scholar] [CrossRef]
- Cliff, A.; Ord, J. Spatial Autocorrelation; Pion: London, UK, 1973. [Google Scholar]
- Besag, J.; Green, P. Spatial statistics and Bayesian computation. J. R. Stat. Soc. Ser. B Stat. Methodol. 1993, 55, 25–37; discussion 53–102. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Griffith, D.A. Computer-Algebra-Software-Assisted Calculus Instruction, Not Calculus for Dummies: Bespoke Applications Necessitate Theory. AppliedMath 2022, 2, 261-268. https://doi.org/10.3390/appliedmath2020016
Griffith DA. Computer-Algebra-Software-Assisted Calculus Instruction, Not Calculus for Dummies: Bespoke Applications Necessitate Theory. AppliedMath. 2022; 2(2):261-268. https://doi.org/10.3390/appliedmath2020016
Chicago/Turabian StyleGriffith, Daniel A. 2022. "Computer-Algebra-Software-Assisted Calculus Instruction, Not Calculus for Dummies: Bespoke Applications Necessitate Theory" AppliedMath 2, no. 2: 261-268. https://doi.org/10.3390/appliedmath2020016
APA StyleGriffith, D. A. (2022). Computer-Algebra-Software-Assisted Calculus Instruction, Not Calculus for Dummies: Bespoke Applications Necessitate Theory. AppliedMath, 2(2), 261-268. https://doi.org/10.3390/appliedmath2020016