Off-Target Effects of Mirabegron on Muscarinic Receptors
Abstract
1. Anticholinergic Burden
2. Off-Target Effects of Mirabegron on Muscarinic Receptors
3. Additive Effects of Mirabegron and Antimuscarinic Agents on Muscarinic Receptors
4. Pharmacokinetics of Mirabegron and Prediction of Human Bladder Muscarinic Receptor Occupancy
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kojima, T.; Akishita, M.; Kameyama, Y.; Yamaguchi, K.; Yamamoto, H.; Eto, M.; Ouchi, Y. High risk of adverse drug reactions in elderly patients taking six or more drugs: Analysis of inpatient database. Geriatr. Gerontol. Int. 2012, 12, 761–762. [Google Scholar] [CrossRef]
- Ruxton, K.; Woodman, R.J.; Mangoni, A.A. Drugs with anticholinergic effects and cognitive impairment, falls and all-cause mortality in older adults: A systematic review and meta-analysis. Br. J. Clin. Pharmacol. 2015, 80, 209–220. [Google Scholar] [CrossRef]
- Salahudeen, M.S.; Duffull, S.B.; Nishtala, P.S. Anticholinergic burden quantified by anticholinergic risk scales and adverse outcomes in older people: A systematic review. BMC Geriatr. 2015, 15, 31. [Google Scholar] [CrossRef] [PubMed]
- Tune, L.E. Anticholinergic effects of medication in elderly patients. J. Clin. Psychiatry 2011, 62, 11–14. [Google Scholar]
- Araklitis, G.; Robinson, D.; Cardozo, L. Cognitive effects of anticholinergic load in women with overactive bladder. Clin. Interv. Aging 2020, 15, 1493–1503. [Google Scholar] [CrossRef] [PubMed]
- Shi, S.; Klotz, U. Age-related changes in pharmacokinetics. Curr. Drug Metab. 2011, 12, 601–610. [Google Scholar] [CrossRef] [PubMed]
- Montagne, A.; Barnes, S.R.; Sweeney, M.D.; Halliday, M.R.; Sagare, A.P.; Zhao, Z.; Toga, A.W.; Jacobs, R.E.; Liu, C.Y.; Amezcua, L.; et al. Blood-brain barrier breakdown in the aging human hippocampus. Neuron 2015, 85, 296–302. [Google Scholar] [CrossRef]
- Shiota, T.; Torimoto, K.; Okuda, M.; Iwata, R.; Kumamoto, H.; Miyake, M.; Hirayama, A.; Tanaka, N.; Fujimoto, K. Cognitive burden and polypharmacy in elderly Japanese patients treated with anticholinergics for an overactive bladder. LUTS Low. Urin. Tract Symptoms 2020, 12, 54–61. [Google Scholar] [CrossRef]
- Chew, M.L.; Mulsant, B.H.; Pollock, B.G.; Lehman, M.E.; Greenspan, A.; Mahmoud, R.A.; Kirshner, M.A.; Sorisio, D.A.; Bies, R.R.; Gharabawi, G. Anticholinergic activity of 107 medications commonly used by older adults. J. Am. Geriatr. Soc. 2008, 56, 1333–1341. [Google Scholar] [CrossRef]
- Rudolph, J.L.; Salow, M.J.; Angelini, M.C.; McGlinchey, R.E. The anticholinergic risk scale and anticholinergic adverse effects in older persons. Arch. Intern. Med. 2008, 168, 508–513. [Google Scholar] [CrossRef]
- The 2019 American Geriatrics Society Beers Criteria® Update Expert Panel. American Geriatrics Society 2019 Updated AGS Beers Criteria® for potentially inappropriate medication use in older adults. J. Am. Geriatr. Soc. 2019, 67, 674–694.
- Jun, K.; Hwang, S.; Ah, Y.; Suh, Y.; Lee, J. Development of an anticholinergic burden scale specific for Korean older adults. Geriatr. Gerontol. Int. 2019, 19, 628–634. [Google Scholar] [CrossRef]
- Yamada, S.; Mochizuki, M.; Chimoto, J.; Futokoro, R.; Kagota, S.; Shinozuka, K. Development of a pharmacological evidence-based anticholinergic burden scale for medications commonly used in older adults. Geriatr. Gerontol. Int. 2023, 23, 558–564. [Google Scholar] [CrossRef]
- Yamada, S.; Mochizuki, M.; Atobe, K.; Kato, Y. Pharmcokinetic and pharmacodynamic considerations for the anticholinergic burden scale of drugs. Geriatr. Gerontol. Int. 2024, 24, 81–87. [Google Scholar] [CrossRef]
- Yamada, S.; Mochizuki, M. Anticholinergic adverse events by polypharmacy and anticholinergic burden score. Jap. J. Geriatr. 2024, 61, 256–270. (In Japanese) [Google Scholar]
- Mizokami, F.; Mizuno, T.; Taguchi, R.; Nasu, I.; Arai, S.; Higashi, K.; Matsumoto, A.; Kamei, M.; Kojima, T.; Sakai, T.; et al. Japanese Society of Geriatric Pharmacy Working Group on Japanese Anticholinergic Risk Scale. Development of the Japanese anticholinergic risk scale: English translation of the Japanese article. Geriatr. Gerontol. Int. 2025, 25, 5–13. [Google Scholar] [CrossRef] [PubMed]
- Kagota, S.; Futokoro, R.; Maruyama-Fumoto, K.; Chimoto, J.; Yamada, S.; Shinozuka, K. Functional anticholinergic activity of drugs classified as strong and moderate on the anticholinergic burden scale on bladder and ileum. Basic Clin. Pharmacol. Toxicol. 2024, 135, 451–463. [Google Scholar] [CrossRef]
- Yamada, S.; Ito, Y.; Nishijima, S.; Kadekawa, K.; Sugaya, K. Basic and clinical aspects of antimuscarinic agents used to treat overactive bladder. Pharmacol. Ther. 2018, 189, 130–148. [Google Scholar] [CrossRef] [PubMed]
- Takasu, T.; Ukai, M.; Sato, S.; Matsui, T.; Nagase, I.; Maruyama, T.; Sasamata, M.; Miyata, K.; Uchida, H.; Yamaguchi, O. Effect of (R)-2-(2-Aminothiazol-4-yl)-4′-{2-[(2-hydroxy-2-phenylethyl)amino]ethyl} Acetanilide (YM178), A novel selective β3-adrenoceptor agonist, on bladder function. J. Pharmacol. Exp. Ther. 2007, 321, 642–647. [Google Scholar] [CrossRef]
- Chapple, C.R.; Kaplan, S.A.; Mitcheson, D.; Klecka, J.; Cummings, J.; Drogendijk, T.; Dorrepaal, C.; Martin, N. Randomized double-blind, active-controlled phase 3 study to assess 12-month safety and efficacy of mirabegron, a β3-adrenoceptor agonist, in overactive bladder. Eur. Urol. 2013, 63, 296–305. [Google Scholar] [CrossRef]
- Michel, M.C.; Korstanje, C. β3-Adrenoceptor agonists for overactive bladder syndrome: Role of translational pharmacology in a repositioning clinical drug development project. Pharmacol. Ther. 2016, 159, 66–82. [Google Scholar] [CrossRef] [PubMed]
- Di Salvo, J.; Nagabukuro, H.; Wickham, L.A.; Abbadie, C.; DeMartino, J.A.; Fitzmaurice, A.; Gichuru, L.; Kulick, A.; Donnelly, M.J.; Jochnowitz, N.; et al. Pharmacological characterization of a novel beta 3 adrenergic agonist, vibegron: Evaluation of antimuscarinic receptor selectivity for combination therapy for overactive bladder. J. Pharmacol. Exp. Ther. 2017, 360, 346–355. [Google Scholar] [CrossRef]
- Dehvari, N.; Da Silva, E.D., Jr.; Bengtsson, T.; Hutchinson, D.S. Mirabegron: Potential off target effects and uses beyond the bladder. Br. J. Pharmacol. 2018, 175, 4072–4082. [Google Scholar] [CrossRef]
- Alexandre, E.C.; Kiguti, L.R.; Calmasini, F.B.; Silva, F.H.; da Silva, K.P.; Ferreira, R.; Ribeiro, C.A.; Mónica, F.Z.; Pupo, A.S.; Antunes, E. Mirabegron relaxes urethral smooth muscle by a dual mechanism involving β3-adrenoceptor activation and α1-adrenoceptor blockade. Br. J. Pharmacol. 2016, 173, 415–428. [Google Scholar] [CrossRef] [PubMed]
- Calmasini, F.B.; Candido, T.Z.; Alexandre, E.C.; D’ANcona, C.A.; Silva, D.; de Oliveira, M.A.; De Nucci, G.; Antunes, E.; Mónica, F.Z. The beta-3 adrenoceptor agonist, mirabegron relaxes isolated prostate from human and rabbit: New therapeutic indication? Prostate 2015, 75, 440–447. [Google Scholar] [CrossRef]
- Mo, W.; Michel, M.C.; Lee, X.W.; Kaumann, A.J.; Molenaar, P. The β3-adrenoceptor agonist mirabegron increases human atrial force through β1-adrenoceptors: An indirect mechanism? Br. J. Pharmacol. 2017, 174, 2706–2715. [Google Scholar] [CrossRef]
- Takusagawa, S.; Miyashita, A.; Iwatsubo, T.; Usui, T. In vitro inhibition and induction of human cytochrome P450 enzymes by mirabegron, a potent and selective β3-adrenoceptor agonist. Xenobiotica 2012, 42, 1187–1196. [Google Scholar] [CrossRef]
- Takusagawa, S.; Yajima, K.; Miyashita, A.; Uehara, S.; Iwatsubo, T.; Usui, T. Identification of human cytochrome P450 isoforms and esterases involved in the metabolism of mirabegron, a potent and selective β3-adrenoceptor agonist. Xenobiotica 2012, 42, 957–967. [Google Scholar] [CrossRef]
- Department of Health Therapeutic Goods Administration: Australian Public Assessment Report for Mirabegron. 2014. Available online: https://www.tga.gov.au/auspar/auspar-mirabegron (accessed on 1 November 2025).
- Groen-Wijnberg, M.; van Dijk, J.; Krauwinkel, W.; Kerbusch, V.; Meijer, J.; Tretter, R.; Zhang, W.; van Gelderen, M. Pharmacokinetic interactions between mirabegron and metformin, warfarin, digoxin or combined oral contraceptives. Eur. J. Drug Metab. Pharmacokinet. 2017, 42, 417–429. [Google Scholar] [CrossRef]
- Yamada, S.; Chimoto, J.; Shiho, M.; Okura, T.; Morikawa, K.; Wakuda, H.; Shinozuka, K. Possible involvement of muscarinic receptor blockade in mirabegron therapy for patients with overactive bladder. J. Pharmacol. Exp. Ther. 2021, 377, 201–206. [Google Scholar] [CrossRef] [PubMed]
- Yamada, S.; Chimoto, J.; Shiho, M.; Okura, T.; Morikawa, K.; Kagota, S.; Shinozuka, K. Muscarinic receptor binding activity in rat tissues by vibegron and prediction of its receptor occupancy levels in the human bladder. Int. J. Urol. 2021, 28, 1298–1303. [Google Scholar] [CrossRef] [PubMed]
- Rudmann, D.G. On-target and Off-target-based Toxicologic Effects. Toxicol. Pathol. 2013, 41, 310–314. [Google Scholar] [CrossRef] [PubMed]
- Chou, C.-K.; Liu, Y.-L.; Chen, Y.-I.; Huang, P.-J.; Tsou, P.-H.; Chen, C.-T.; Lee, H.-H.; Wang, Y.-N.; Hsu, J.L.; Lee, J.-F.; et al. Digital receptor occupancy assay in quantifying on- and off-target binding affinities of therapeutic antibodies. ACS Sens. 2020, 5, 296–302. [Google Scholar] [CrossRef] [PubMed]
- Cernecka, H.; Kersten, K.; Maarsingh, H.; Elzinga, C.R.; de Jong, I.J.; Korstanje, C.; Michel, M.C.; Schmidt, M. β3-Adrenoceptor-mediated relaxation of rat and human urinary bladder: Roles of BKCa channels and rho kinase. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2015, 388, 749–759. [Google Scholar] [CrossRef]
- Svalø, J.; Nordling, J.; Bouchelouche, K.; Andersson, K.-E.; Korstanje, C.; Bouchelouche, P. The novel β3-adrenoceptor agonist mirabegron reduces carbachol-induced contractile activity in detrusor tissue from patients with bladder outflow obstruction with or without detrusor overactivity. Eur. J. Pharmacol. 2013, 699, 101–105. [Google Scholar] [CrossRef] [PubMed]
- Krauwinkel, W.; van Dijk, J.; Schaddelee, M.; Eltink, C.; Meijer, J.; Strabach, G.; van Marle, S.; Kerbusch, V.; van Gelderen, M. Pharmacokinetic Properties of Mirabegron, a β3-Adrenoceptor Agonist: Results from Two Phase I, Randomized, Multiple-Dose Studies in Healthy Young and Elderly Men and Women. Clin. Ther. 2012, 34, 2144–2160. [Google Scholar] [CrossRef]
- Igawa, Y.; Aizawa, N.; Michel, M.C. β3-Adrenoceptors in the normal and diseased urinary bladder-what are the open questions? Br. J. Pharmacol. 2019, 176, 2525–2538. [Google Scholar] [CrossRef]
- Dale, P.R.; Cernecka, H.; Schmidt, M.; Dowling, M.R.; Charlton, S.J.; Pieper, M.P.; Michel, M.C. The pharmacological rationale for combining muscarinic receptor antagonists and β-adrenoceptor agonists in the treatment of airway and bladder disease. Curr. Opin. Pharmacol. 2014, 16, 31–42. [Google Scholar] [CrossRef]
- Huang, R.; Tamalunas, A.; Waidelich, R.; Strittmatter, F.; Stief, C.G.; Hennenberg, M. Inhibition of full smooth muscle contraction in isolated human detrusor tissues by mirabegron is limited to off-target inhibition of neurogenic contractions. J. Pharmacol. Exp. Ther. 2022, 381, 176–187. [Google Scholar] [CrossRef]
- Ito, Y.; Oyunzul, L.; Seki, M.; Fujino Oki, T.; Matsui, M.; Yamada, S. Quantitative analysis of the loss of muscarinic receptors in various peripheral tissues in M1-M5 receptor single knockout mice. Br. J. Pharmacol. 2009, 156, 1147–1153. [Google Scholar] [CrossRef]
- Oki, T.; Takagi, Y.; Inagaki, S.; Taketo, M.M.; Manabe, T.; Matsui, M.; Yamada, S. Quantitative analysis of binding parameters of [3H]N-methylscopolamine in central nervous system of muscarinic acetylcholine receptor knockout mice. Brain Res. Mol. Brain Res. 2005, 133, 6–11. [Google Scholar] [CrossRef]
- Noronha-Blob, L.; Lowe, V.; Patton, A.; Canning, B.; Costello, D.; Kinnier, W.J. Muscarinic receptors: Relationships among phosphoinositide breakdown, adenylate cyclase inhibition, in vitro detrusor muscle contractions and in vivo cystometrogram studies in guinea pig bladder. J. Pharmacol. Exp. Ther. 1989, 249, 843–851. [Google Scholar] [CrossRef]
- Matsui, M.; Griffin, M.T.; Shehnaz, D.; Taketo, M.M.; Ehlert, F.J. Increased relaxant action of forskolin and isoproterenol against muscarinic agonist-induced contractions in smooth muscle from M2 receptor knockout mice. J. Pharmacol. Exp. Ther. 2003, 305, 106–113. [Google Scholar] [CrossRef]
- Ehlert, F.J.; Griffin, M.T.; Abe, D.M.; Vo, T.H.; Taketo, M.M.; Manabe, T.; Matsui, M. The M2 muscarinic receptor mediates contraction through indirect mechanisms in mouse urinary bladder. J. Pharmacol. Exp. Ther. 2005, 313, 368–378. [Google Scholar] [CrossRef]
- Ehlert, F.J.; Ahn, S.; Pak, K.J.; Park, G.J.; Sangnil, M.S.; Tran, J.A.; Matsui, M. Neuronally released acetylcholine acts on the M2 muscarinic receptor to oppose the relaxant effect of isoproterenol on cholinergic contractions in mouse urinary bladder. J. Pharmacol. Exp. Ther. 2007, 322, 631–637. [Google Scholar] [CrossRef]
- Ohyama, K.; Inoue, M. Association between selective beta-adrenergic drugs and blood pressure elevation: Data mining of the Japanese Adverse Drug Event Report (JADER) database. Yakugaku Zasshi 2016, 136, 1065–1071. [Google Scholar] [CrossRef]
- Kelleher, C.; Hakimi, Z.; Zur, R.; Siddiqui, E.; Maman, K.; Aballéa, S.; Nazir, J.; Chapple, C. Efficacy and tolerability of mirabegron compared with antimuscarinic monotherapy or combination therapies for overactive bladder: A systematic review and network meta-analysis. Eur. Urol. 2018, 74, 324–333. [Google Scholar] [CrossRef] [PubMed]
- Herschorn, S.; Chapple, C.R.; Abrams, P.; Arlandis, S.; Mitcheson, D.; Lee, K.; Ridder, A.; Stoelzel, M.; Paireddy, A.; van Maanen, R.; et al. Efficacy and safety of combinations of mirabegron and solifenacin compared with monotherapy and placebo in patients with overactive bladder (SYNERGY study). BJU Int. 2017, 120, 562–575. [Google Scholar] [CrossRef] [PubMed]
- Soliman, M.G.; El-Abd, S.; El-Gamal, O.M.; Raheem, A.A.; Abou-Ramadan, A.R.; El-Abd, A.S. Mirabegron versus solifenacin in children with overactive bladder: Prospective randomized single-blind controlled trial. Urol. Int. 2021, 105, 1011–1017. [Google Scholar] [CrossRef]
- Yamada, S.; Mochizuki, M.; Maruyama-Fumoto, K.; Kagota, S.; Shinozuka, K. Additive effects of mirabegron on muscarinic receptor binding and on relaxation of cholinergic detrusor muscle contraction by antimuscarinics. J. Pharmacol. Sci. 2025, 58, 363–367. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.H.; Kim, A.; Choo, M.-S. Additional low-dose antimuscarinics can improve overactive bladder symptoms in patients with suboptimal response to beta 3 agonist monotherapy. Investig. Clin. Urol. 2017, 58, 261–266. [Google Scholar] [CrossRef] [PubMed]
- Sugaya, K.; Yamagami, H.; Nishijima, S.; Kadekawa, K.; Hizue, M.; Ito, Y.; Yamada, S. Effects of combined treatment with fesoterodine and mirabegron in a pelvic congestion rat model: Results from in vitro and in vivo functional studies. LUTS Low. Urin. Tract Symptoms 2020, 12, 173–179. [Google Scholar] [CrossRef]
- Iitsuka, H.; Tokuno, T.; Amada, Y.; Matsushima, H.; Katashima, M.; Sawamoto, T.; Takusagawa, S.; van Gelderen, M.; Tanaka, T.; Miyahara, H. Pharmacokinetics of mirabegron, a β3-adrenoceptor agonist for treatment of overactive bladder, in healthy Japanese Male Subjects: Results from single- and multiple-dose studies. Clin. Drug Investig. 2014, 34, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Eltink, C.; Lee, J.; Schaddelee, M.; Zhang, W.; Kerbusch, V.; Meijer, J.; van Marle, S.; Grunenberg, N.; Kowalski, D.; Drogendijk, T.; et al. Single dose pharmacokinetics and absolute bioavailability of mirabegron, b3-adrenoceptor agonist for treatment of overactive bladder. Int. J. Clin. Pharmacol. Ther. 2012, 50, 838–849. [Google Scholar] [CrossRef] [PubMed]




| Target | Effect |
|---|---|
| α1A-Adrenoceptors | Relaxes mouse urethra smooth muscle [24] Antagonizes α1-adrenoceptor mediated human prostate smooth muscle contraction [25] Binds to human αIA-adrenoceptors (pki 6.36) [24] |
| αlD-Adrenoceptors | Antagonizes noradrenaline-mediated responses in the rat aorta [24] |
| β1-Adrenoceptors | Cardiostimulant [26] |
| CYP2D6, CYP3A4 | Inhibitor [27,28] |
| Dopamine transporter | Binds to dopamine transporters [29] |
| Muscarinic M2 receptor | Binds to M2 receptor [29] |
| Noradrenaline transporters | Increase noradrenaline release in the heart; cardiostimulant [26,29] Binds to noradrenaline transporters [29] |
| Organic cation transporters | Inhibitor [29,30] |
| P-glycoprotein | Weak inhibitor [29,30] |
| Sodium channel site 2 | Binds to sodium channels [29] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Yamada, S.; Mogi, M.; Kagota, S.; Shinozuka, K. Off-Target Effects of Mirabegron on Muscarinic Receptors. Future Pharmacol. 2026, 6, 7. https://doi.org/10.3390/futurepharmacol6010007
Yamada S, Mogi M, Kagota S, Shinozuka K. Off-Target Effects of Mirabegron on Muscarinic Receptors. Future Pharmacology. 2026; 6(1):7. https://doi.org/10.3390/futurepharmacol6010007
Chicago/Turabian StyleYamada, Shizuo, Masaki Mogi, Satomi Kagota, and Kazumasa Shinozuka. 2026. "Off-Target Effects of Mirabegron on Muscarinic Receptors" Future Pharmacology 6, no. 1: 7. https://doi.org/10.3390/futurepharmacol6010007
APA StyleYamada, S., Mogi, M., Kagota, S., & Shinozuka, K. (2026). Off-Target Effects of Mirabegron on Muscarinic Receptors. Future Pharmacology, 6(1), 7. https://doi.org/10.3390/futurepharmacol6010007

