Development of New Chitosan-Based Complex with Bioactive Molecules for Regenerative Medicine
Abstract
1. Introduction
2. Materials and Methods
2.1. Development of Chitosan Complexes
2.2. Characterization with Fourier Transform Infrared Spectroscopy (FTIR)
2.3. Optical and Electron Microscopy Analises
2.4. Zeta Potential Measurements
2.5. Thermogravimetric Analysis (TGA) Experimental Procedures
2.6. Differential Scanning Calorimetry (DSC) Analysis
2.7. Mesenchymal Stem/Stromal Cell (MSC) Isolation, Cultivation, and Characterization
2.8. Cell Viability Assays
2.9. Statistical Analysis
3. Results
3.1. Fourier Transform Infrared Spectroscopy (FTIR)
3.2. Microscopic Characterization
3.3. Zeta Potential
3.4. Thermogravimetric Analysis (TGA)
3.5. Differential Scanning Calorimetry (DSC)
3.6. Biological Test with Mesenchymal Stem/Stromal Cells (MSCs)
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mason, C.; Dunnill, P. A Brief Definition of Regenerative Medicine. Regen. Med. 2008, 3, 1–5. [Google Scholar] [CrossRef]
- Langer, R.; Vacanti, J.P. Tissue Engineering. Science 1993, 260, 920–926. [Google Scholar] [CrossRef] [PubMed]
- Rajalekshmy, G.P.; Rekha, M.R. Trends in Bioactive Biomaterials in Tissue Engineering and Regenerative Medicine. In Biomaterials in Tissue Engineering and Regenerative Medicine; Springer Singapore: Singapore, 2021; pp. 271–303. [Google Scholar]
- Burg, K.J.L.; Porter, S.; Kellam, J.F. Biomaterial Developments for Bone Tissue Engineering. Biomaterials 2000, 21, 2347–2359. [Google Scholar] [CrossRef]
- Hasan, A.; Morshed, M.; Memic, A.; Hassan, S.; Webster, T.J.; Marei, H.E.S. Nanoparticles in Tissue Engineering: Applications, Challenges and Prospects. Int. J. Nanomed. 2018, 13, 5637–5655. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Kokil, G.R.; He, Y.; Lowe, B.; Salam, A.; Altalhi, T.A.; Ye, Q.; Kumeria, T. Inorganic/Organic Combination: Inorganic Particles/Polymer Composites for Tissue Engineering Applications. Bioact. Mater. 2023, 24, 535–550. [Google Scholar] [CrossRef]
- Gatta, P.P. The State of World Fisheries and Aquaculture 2022; FAO: Rome, Italy, 2022; ISBN 978-92-5-136364-5. [Google Scholar]
- Yang, T.-L. Chitin-Based Materials in Tissue Engineering: Applications in Soft Tissue and Epithelial Organ. Int. J. Mol. Sci. 2011, 12, 1936–1963. [Google Scholar] [CrossRef]
- do Nascimento, E.G.; de Caland, L.B.; de Medeiros, A.S.A.; Fernandes-Pedrosa, M.F.; Soares-Sobrinho, J.L.; dos Santos, K.S.C.R.; da Silva-Júnior, A.A. Tailoring Drug Release Properties by Gradual Changes in the Particle Engineering of Polysaccharide Chitosan Based Powders. Polymers 2017, 9, 253. [Google Scholar] [CrossRef] [PubMed]
- Baharlouei, P.; Rahman, A. Chitin and Chitosan: Prospective Biomedical Applications in Drug Delivery, Cancer Treatment, and Wound Healing. Mar. Drugs 2022, 20, 460. [Google Scholar] [CrossRef]
- Garcia-Garcia, A.; Muñana-González, S.; Lanceros-Mendez, S.; Ruiz-Rubio, L.; Alvarez, L.P.; Vilas-Vilela, J.L. Biodegradable Natural Hydrogels for Tissue Engineering, Controlled Release, and Soil Remediation. Polymers 2024, 16, 2599. [Google Scholar] [CrossRef]
- Mohammed, M.A.; Syeda, J.T.M.; Wasan, K.M.; Wasan, E.K. An Overview of Chitosan Nanoparticles and Its Application in Non-Parenteral Drug Delivery. Pharmaceutics 2017, 9, 53. [Google Scholar] [CrossRef] [PubMed]
- Nagpal, K.; Singh, S.K.; Mishra, D.N. Chitosan Nanoparticles: A Promising System in Novel Drug Delivery. Chem. Pharm. Bull. 2010, 58, 1423–1430. [Google Scholar] [CrossRef]
- Moores, J. Vitamin C: A Wound Healing Perspective. Br. J. Community Nurs. 2013, 18, S6–S11. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Woźniczka, M.; Van Hecke, K.; Buyst, D.; Mara, D.; Vervaet, C.; Herman, K.; Wynendaele, E.; Deconinck, E.; De Spiegeleer, B. Structural Study of L-Ascorbic Acid 2-Phosphate Magnesium, a Raw Material in Cell and Tissue Therapy. JBIC J. Biol. Inorg. Chem. 2020, 25, 875–885. [Google Scholar] [CrossRef] [PubMed]
- Elmore, A.R. Final Report of the Safety Assessment of L-Ascorbic Acid, Calcium Ascorbate, Magnesium Ascorbate, Magnesium Ascorbyl Phosphate, Sodium Ascorbate, and Sodium Ascorbyl Phosphate as Used in Cosmetics1. Int. J. Toxicol. 2005, 24, 51–111. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Best, S.M. Ceramic Biomaterials for Tissue Engineering. In Tissue Engineering Using Ceramics and Polymers, 3rd ed.; Woodhead Publishing imprint of Elsevier: Cambridge, UK, 2022; pp. 3–40. [Google Scholar]
- Bettach, R.; Guillaume, B.; Taschieri, S.; Del Fabbro, M. Clinical Performance of a Highly Porous Beta-TCP as the Grafting Material for Maxillary Sinus Augmentation. Implant Dent. 2014, 23, 357–364. [Google Scholar] [CrossRef]
- Uchikawa, E.; Yoshizawa, M.; Li, X.; Matsumura, N.; Li, N.; Chen, K.; Kagami, H. Tooth Transplantation with a Β-tricalcium Phosphate Scaffold Accelerates Bone Formation and Periodontal Tissue Regeneration. Oral Dis. 2021, 27, 1226–1237. [Google Scholar] [CrossRef] [PubMed]
- Bohner, M.; Santoni, B.L.G.; Döbelin, N. β-Tricalcium Phosphate for Bone Substitution: Synthesis and Properties. Acta. Biomater. 2020, 113, 23–41. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Cui, Q.; Zeng, S.; Ran, G.; Zhang, Z.; Liu, X.; Fang, W.; Xu, S. Effect of Modification of β-Tricalcium Phosphate/Chitosan Hydrogel on Growth and Mineralization of Dental Pulp Stem Cells. Chin. J. Tissue Eng. Res. 2021, 25, 3493–3499. [Google Scholar]
- Ghahremani-nasab, M.; Akbari-Gharalari, N.; Rahmani Del Bakhshayesh, A.; Ghotaslou, A.; Ebrahimi-kalan, A.; Mahdipour, M.; Mehdipour, A. Synergistic Effect of Chitosan-Alginate Composite Hydrogel Enriched with Ascorbic Acid and Alpha-Tocopherol under Hypoxic Conditions on the Behavior of Mesenchymal Stem Cells for Wound Healing. Stem Cell Res. Ther. 2023, 14, 326. [Google Scholar] [CrossRef]
- Seddighian, A.; Ganji, F.; Baghaban-Eslaminejad, M.; Bagheri, F. Electrospun PCL Scaffold Modified with Chitosan Nanoparticles for Enhanced Bone Regeneration. Prog. Biomater. 2021, 10, 65–76. [Google Scholar] [CrossRef] [PubMed]
- Kaczmarek, B.; Nadolna, K.; Owczarek, A.; Mazur, O.; Sionkowska, A.; Łukowicz, K.; Vishnu, J.; Manivasagam, G.; Osyczka, A.M. Properties of Scaffolds Based on Chitosan and Collagen with Bioglass 45S5. IET Nanobiotechnology 2020, 14, 830–832. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Shah, A.; Hunter, R.A.; Soto, R.J.; Schoenfisch, M.H. S-Nitrosothiol-Modified Nitric Oxide-Releasing Chitosan Oligosaccharides as Antibacterial Agents. Acta. Biomater. 2015, 12, 62–69. [Google Scholar] [CrossRef] [PubMed]
- Gegel, N.; Zhuravleva, Y.Y.; Shipovskaya, A.B.; Malinkina, O.N.; Zudina, I.V. Influence of Chitosan Ascorbate Chirality on the Gelation Kinetics and Properties of Silicon-Chitosan-Containing Glycerohydrogels. Polymers 2018, 10, 259. [Google Scholar] [CrossRef] [PubMed]
- Pighinelli, L.; Guimaraes, M.F.; Paz, R.L. Properties of Hydrochloric Chitosan Solutions Modified with Nano-Calcium Phosphate Complex. J. Tissue Sci. Eng. 2015, 06, 2. [Google Scholar] [CrossRef]
- Wawro, D.; Pighinelli, L. Chitosan Fibers Modified with HAp/β–TCP Nanoparticles. Int. J. Mol. Sci. 2011, 12, 7286–7300. [Google Scholar] [CrossRef]
- Maurmann, N.; Pereira, D.P.; Burguez, D.; de S Pereira, F.D.A.; Neto, P.I.; Rezende, R.A.; Gamba, D.; Da Silva, J.V.L.; Pranke, P. Mesenchymal Stem Cells Cultivated on Scaffolds Formed by 3D Printed PCL Matrices, Coated with PLGA Electrospun Nanofibers for Use in Tissue Engineering. Biomed. Phys. Eng. Express 2017, 3, 045005. [Google Scholar] [CrossRef]
- Vieira, J.; Maurmann, N.; Venturini, J.; Pranke, P.; Bergmann, C.P. PCL-Coated Magnetic Fe3O4 Nanoparticles: Production, Characterization and Viability on Stem Cells. Mater. Today Commun. 2022, 31, 103416. [Google Scholar] [CrossRef]
- Zmozinski, A.V.S.; Peres, R.; Macedo, A.J.; Mendes Becker, E.; Pasinato Napp, A.; Schneider, R.; Reisdörfer Silveira, J.; Ferreira, C.A.H.; Vainstein, M.; Schrank, A. Silicone-Geranium Essential Oil Blend for Long-Term Antifouling Coatings. Biofouling 2024, 40, 209–222. [Google Scholar] [CrossRef]
- Silveira, M.R.S.; Moritz, V.F.; Ferreira, C.A.; Ferry, L.; Lopez-Cuesta, J.-M. Flammability of Novolac Epoxy Cured with Aromatic Diamines. Thermochim. Acta 2024, 741, 179870. [Google Scholar] [CrossRef]
- Felipe, V.T.A.; Marques, J.F.; da Silva Silveira, M.R.; Ferreira, C.A.; Mazzetto, S.E.; Lomonaco, D.; Avelino, F. High-Performance Acetosolv Lignin-Incorporated DGEBA Cured with Aprotic Imidazolium-Based Ionic Liquid: Polymerization, Chemical, Thermal and Combustion Aspects of the Thermosetting Materials. Int. J. Biol. Macromol. 2023, 242, 124863. [Google Scholar] [CrossRef]
- Nicola, F.; Marques, M.R.; Odorcyk, F.; Petenuzzo, L.; Aristimunha, D.; Vizuete, A.; Sanches, E.F.; Pereira, D.P.; Maurmann, N.; Gonçalves, C.-A.; et al. Stem Cells from Human Exfoliated Deciduous Teeth Modulate Early Astrocyte Response after Spinal Cord Contusion. Mol. Neurobiol. 2019, 56, 748–760. [Google Scholar] [CrossRef]
- Li, X.; Yang, Z.; Zhang, A. The Effect of Neurotrophin-3/Chitosan Carriers on the Proliferation and Differentiation of Neural Stem Cells. Biomaterials 2009, 30, 4978–4985. [Google Scholar] [CrossRef]
- Bai, T.; Duan, H.; Zhang, B.; Hao, P.; Zhao, W.; Gao, Y.; Yang, Z.; Li, X. Neuronal Differentiation and Functional Maturation of Neurons from Neural Stem Cells Induced by BFGF-Chitosan Controlled Release System. Drug Deliv. Transl. Res. 2023, 13, 2378–2393. [Google Scholar] [CrossRef]
- Machado, G.M.; Kasper, R.H.; Bastidas, J.G.; Couto, M.; Brew, M.C.; Maurmann, N.; Pranke, P.; Bavaresco, C.S. Cytoprotective Effect of a Bioactive Molecule on Different Cells Treated with Zoledronate: Application in Tissue Engineering. In Proceedings of the 36th SBPqO Annual Meeting (BOR), Campinas, Brazil, 4–7 September 2019; p. 114. [Google Scholar]
- Chitra, S.; Bargavi, P.; Durgalakshmi, D.; Rajashree, P.; Balakumar, S. On the Investigation of Structural and Biological Properties of 45S5 Bioglass and β-Tricalcium Phosphate Nanostructured Materials. AIP Conf. Proc. 2019, 2115, 030242. [Google Scholar]
- Ţârdei, C.; Mitrea, S.; Crăciunescu, O.; Opriţa, E.I.; Truşcă, R. Fabrication and Characterization of Porous Bioceramic Beads Based on β-Tricalcium Phosphate Hybrid Compositions. Rev. Romana Mater. 2012, 42, 283. (In Romanian) [Google Scholar]
- Chen, X.; Chew, S.L.; Kerton, F.M.; Yan, N. Direct Conversion of Chitin into a N-Containing Furan Derivative. Green Chem. 2014, 16, 2204–2212. [Google Scholar] [CrossRef]
- Islam, S.; Arnold, L.; Padhye, R. Comparison and Characterisation of Regenerated Chitosan from 1-Butyl-3-Methylimidazolium Chloride and Chitosan from Crab Shells. BioMed Res. Int. 2015, 2015, 874316. [Google Scholar] [CrossRef]
- Fatima, B. Quantitative Analysis by IR: Determination of Chitin/Chitosan DD. In Modern Spectroscopic Techniques and Applications; IntechOpen: London, UK, 2020. [Google Scholar]
- Arca, H.Ç.; Şenel, S. Chitosan Based Systems for Tissue Engineering Part 1: Hard Tissues. FABAD J. Pharm. Sci. 2008, 33, 35–49. [Google Scholar]
- Bujňáková, Z.; Dutková, E.; Zorkovská, A.; Baláž, M.; Kováč, J.; Kello, M.; Mojžiš, J.; Briančin, J.; Baláž, P. Mechanochemical Synthesis and in Vitro Studies of Chitosan-Coated InAs/ZnS Mixed Nanocrystals. J. Mater. Sci. 2017, 52, 721–735. [Google Scholar] [CrossRef]
- Diab, M.A.; El-Sonbati, A.Z.; Al-Halawany, M.M.; Bader, D.M.D. Thermal Stability and Degradation of Chitosan Modified by Cinnamic Acid. Open J. Polym. Chem. 2012, 02, 14–20. [Google Scholar] [CrossRef]
- Maurmann, N.; Lund, D.G.; Pereira, D.P.; Pranke, P. Evaluation of the chemical composition of a copaiba oil (Copaifera spp.) and its effect on mesenchymal stem cells. Rev. Med. 2022, 101, e-185868. [Google Scholar] [CrossRef]
- Siqueira, R.L.; Maurmann, N.; Burguêz, D.; Pereira, D.P.; Rastelli, A.N.S.; Peitl, O.; Pranke, P.; Zanotto, E.D. Bioactive Gel-Glasses with Distinctly Different Compositions : Bioactivity, Viability of Stem Cells and Antibio Fi Lm Effect against Streptococcus Mutans. Mater. Sci. Eng. C 2017, 76, 233–241. [Google Scholar] [CrossRef]
- Dominici, M.; Le Blanc, K.; Mueller, I.; Slaper-Cortenbach, I.; Marini, F.C.; Krause, D.S.; Deans, R.J.; Keating, A.; Prockop, D.J.; Horwitz, E.M. Minimal Criteria for Defining Multipotent Mesenchymal Stromal Cells. The International Society for Cellular Therapy Position Statement. Cytotherapy 2006, 8, 315–317. [Google Scholar] [CrossRef]
- Jayakumar, R.; Prabaharan, M.; Kumar, P.T.S.; Nair, S.V.; Tamura, H. Biomaterials Based on Chitin and Chitosan in Wound Dressing Applications. Biotechnol. Adv. 2011, 29, 322–337. [Google Scholar] [CrossRef] [PubMed]
- Muzzarelli, R.A.A. Chitins and Chitosans for the Repair of Wounded Skin, Nerve, Cartilage and Bone. Carbohydr. Polym. 2009, 76, 167–182. [Google Scholar] [CrossRef]
- Venkatesan, J.; Kim, S.-K. Chitosan Composites for Bone Tissue Engineering—An Overview. Mar. Drugs 2010, 8, 2252–2266. [Google Scholar] [CrossRef]
- Rickert, D.; Vissink, A.; Slot, W.J.; Sauerbier, S.; Meijer, H.J.A.; Raghoebar, G.M. Maxillary Sinus Floor Elevation Surgery with BioOss® Mixed with a Bone Marrow Concentrate or Autogenous Bone: Test of Principle on Implant Survival and Clinical Performance. Int. J. Oral Maxillofac. Surg. 2014, 43, 243–247. [Google Scholar] [CrossRef]
- Bunyaratavej, P.; Wang, H. Collagen Membranes: A Review. J. Periodontol. 2001, 72, 215–229. [Google Scholar] [CrossRef]
- Muzzarelli, R.A.A. Chitins and Chitosans as Immunoadjuvants and Non-Allergenic Drug Carriers. Mar. Drugs 2010, 8, 292–312. [Google Scholar] [CrossRef]
- Zhao, L.; Mitomo, H.; Nagasawa, N.; Yoshii, F.; Kume, T. Radiation Synthesis and Characteristic of the Hydrogels Based on Carboxymethylated Chitin Derivatives. Carbohydr. Polym. 2003, 51, 169–175. [Google Scholar] [CrossRef]
- Gamzazade, A.I.; Nasibov, S.M. Formation and Properties of Polyelectrolyte Complexes of Chitosan Hydrochloride and Sodium Dextransulfate. Carbohydr. Polym. 2002, 50, 339–343. [Google Scholar] [CrossRef]
- Claesson, P.M.; Ninham, B.W. PH-Dependent Interactions between Adsorbed Chitosan Layers. Langmuir 1992, 8, 1406–1412. [Google Scholar] [CrossRef]
- Kadek Hariscandra Dinatha, I.; Jamilludin, M.A.; Supii, A.I.; Wihadmadyatami, H.; Partini, J.; Yusuf, Y. Porous Scaffold Hydroxyapatite from Sand Lobster Shells (Panulirus Homarus) Using Polyethylene Oxide/Chitosan as Polymeric Porogen for Bone Tissue Engineering. J. Biomed. Mater. Res. Part B Appl. Biomater. 2024, 112, e35341. [Google Scholar] [CrossRef] [PubMed]
- Boda, R.; Lázár, I.; Keczánné-Üveges, A.; Bakó, J.; Tóth, F.; Trencsényi, G.; Kálmán-Szabó, I.; Béresová, M.; Sajtos, Z.D.; Tóth, E.; et al. β-Tricalcium Phosphate-Modified Aerogel Containing PVA/Chitosan Hybrid Nanospun Scaffolds for Bone Regeneration. Int. J. Mol. Sci. 2023, 24, 7562. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, M.; Turner, P.R.; McAdam, C.J.; Ali, M.A.; Cabral, J.D. A comparison between β-tricalcium phosphate and chitosanpoly-caprolactone-based3Dmelt extruded composite scaffolds. Biopolymers 2022, 113, e23482. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.; Bano, S.; Poojary, S.; Chaudhary, A.; Kumar, D.; Negi, Y.S. Effect of Cellulose Nanocrystals on Chitosan/PVA/Nano β-TCP Composite Scaffold for Bone Tissue Engineering Application. J. Biomater. Sci. Polym. Ed. 2022, 33, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.; Cheng, G.; Dai, J.; Li, Z. Bi-Layered Composite Scaffold for Repair of the Osteochondral Defects. Adv. Wound Care 2021, 10, 401–414. [Google Scholar] [CrossRef]
- Siddiqui, N.; Madala, S.; Parcha, S.R.P.; Mallick, S.P. Osteogenic Differentiation Ability of Human Mesenchymal Stem Cells on Chitosan/Poly (Caprolactone)/Nano Beta Tricalcium Phosphate Composite Scaffolds. Biomed. Phys. Eng. Express 2020, 6, 015018. [Google Scholar] [CrossRef]
- Matinfar, M.; Mesgar, A.S.; Mohammadi, Z. Evaluation of Physicochemical, Mechanical and Biological Properties of Chitosan/Carboxymethyl Cellulose Reinforced with Multiphasic Calcium Phosphate Whisker-like Fibers for Bone Tissue Engineering. Mater. Sci. Eng. C 2019, 100, 341–353. [Google Scholar] [CrossRef]
- Topsakal, A.; Uzun, M.; Ugar, G.; Ozcan, A.; Altun, E.; Oktar, F.N.; Ikram, F.; Ozkan, O.; Sasmazel, H.T.; Gunduz, O. Development of Amoxicillin-Loaded Electrospun Polyurethane/Chitosan/β-Tricalcium Phosphate Scaffold for Bone Tissue Regeneration. IEEE Trans. Nanobioscience 2018, 17, 321–328. [Google Scholar] [CrossRef] [PubMed]
- Muthukumar, T.; Aravinthan, A.; Sharmila, J.; Kim, N.S.; Kim, J.-H. Collagen/Chitosan Porous Bone Tissue Engineering Composite Scaffold Incorporated with Ginseng Compound K. Carbohydr. Polym. 2016, 152, 566–574. [Google Scholar] [CrossRef]
- Cheng, G.; Li, Z.; Xing, X.; Li, D.-Q.; Li, Z.-B. Multiple Inoculations of Bone Marrow Stromal Cells into Beta-Tricalcium Phosphate/Chitosan Scaffolds Enhances the Formation and Reconstruction of New Bone. Int. J. Oral. Maxillofac. Implants 2016, 31, 204–215. [Google Scholar] [CrossRef] [PubMed]
- Algul, D.; Sipahi, H.; Aydin, A.; Kelleci, F.; Ozdatli, S.; Yener, F.G. Biocompatibility of Biomimetic Multilayered Alginate–Chitosan/β-TCP Scaffold for Osteochondral Tissue. Int. J. Biol. Macromol. 2015, 79, 363–369. [Google Scholar] [CrossRef]
- Lee, S.; Kwon, J.; Lee, Y.; Kim, K.; Kim, K. Bioactivity and Mechanical Properties of Collagen Composite Membranes Reinforced by Chitosan and Β-tricalcium Phosphate. J. Biomed. Mater. Res. Part B Appl. Biomater. 2012, 100, 1935–1942. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Le, D.Q.; Hein, S.; Li, P.; Nygaard, J.V.; Kassem, M.; Kjems, J.; Besenbacher, F.; Bünger, C. Fabrication and Characterization of a Rapid Prototyped Tissue Engineering Scaffold with Embedded Multicomponent Matrix for Controlled Drug Release. Int. J. Nanomed. 2012, 7, 4285–4297. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Qiao, P.Y.; Xiao, J.J.; Dong, L.M.; Xie, Q.F.; Xu, T. Cytological Study on Osteoblasts and in-Situ Setting Calcium Phosphate Cements. J. Peking Univ. Health Sci. 2011, 43, 67–72. [Google Scholar]
- Millar-Hume, L. Collagen Stimulants in Facial Rejuvenation: A Systematic Review. J. Aesthetic Nurs. 2020, 9, 334–339. [Google Scholar] [CrossRef]
- Anitha, A.; Sowmya, S.; Kumar, P.T.S.; Deepthi, S.; Chennazhi, K.P.; Ehrlich, H.; Tsurkan, M.; Jayakumar, R. Chitin and Chitosan in Selected Biomedical Applications. Prog. Polym. Sci. 2014, 39, 1644–1667. [Google Scholar] [CrossRef]
- Cicciù, M.; Fiorillo, L.; Cervino, G. Chitosan Use in Dentistry: A Systematic Review of Recent Clinical Studies. Mar. Drugs 2019, 17, 417. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maurmann, N.; Machado, G.M.; Kasper, R.H.; Couto, M.d.; Paz, L.; Oliveira, L.; Girón Bastidas, J.; Bottezini, P.A.; Notargiacomo, L.M.; Ferreira, C.A.; et al. Development of New Chitosan-Based Complex with Bioactive Molecules for Regenerative Medicine. Future Pharmacol. 2024, 4, 873-891. https://doi.org/10.3390/futurepharmacol4040046
Maurmann N, Machado GM, Kasper RH, Couto Md, Paz L, Oliveira L, Girón Bastidas J, Bottezini PA, Notargiacomo LM, Ferreira CA, et al. Development of New Chitosan-Based Complex with Bioactive Molecules for Regenerative Medicine. Future Pharmacology. 2024; 4(4):873-891. https://doi.org/10.3390/futurepharmacol4040046
Chicago/Turabian StyleMaurmann, Natasha, Gabriela Moraes Machado, Rafaela Hartmann Kasper, Marcos do Couto, Luan Paz, Luiza Oliveira, Juliana Girón Bastidas, Paola Arosi Bottezini, Lucas Machado Notargiacomo, Carlos Arthur Ferreira, and et al. 2024. "Development of New Chitosan-Based Complex with Bioactive Molecules for Regenerative Medicine" Future Pharmacology 4, no. 4: 873-891. https://doi.org/10.3390/futurepharmacol4040046
APA StyleMaurmann, N., Machado, G. M., Kasper, R. H., Couto, M. d., Paz, L., Oliveira, L., Girón Bastidas, J., Bottezini, P. A., Notargiacomo, L. M., Ferreira, C. A., Pighinelli, L., Bavaresco, C. S., Pranke, P., & Brew, M. (2024). Development of New Chitosan-Based Complex with Bioactive Molecules for Regenerative Medicine. Future Pharmacology, 4(4), 873-891. https://doi.org/10.3390/futurepharmacol4040046