Medicinal Herbal Extracts: Therapeutic Potential in Acute Lung Injury
Abstract
1. Introduction
2. TLR4/NF-κB Activation in Immune Cells Against Endotoxin-Induced ALI
3. Ameliorative Effects of MHEs in ALI/ARDS Models
3.1. Cryptotaenia japonica (2012)
3.2. Alismatis Rhizoma (2013)
3.3. Mosla scabra (2013)
3.4. Lysimachia clethroides (2013)
3.5. Ginkgo biloba (2013 and 2014)
3.6. Angelica decursiva (2014)
3.7. Carthamus tinctorius (2014)
3.8. Lonicerae japonicae flos (2015)
3.9. Taraxacum mongolicum (2015)
3.10. Impatiens textori (2015)
3.11. Callicarpa japonica (2015)
3.12. Dracocephalum rupestre (2015)
3.13. Mahonia bealei (2016)
3.14. Picrasma quassiodes (2016)
3.15. Helminthostachys zeylanica (2017)
3.16. Viola tianshanica (2017)
3.17. Paulownia tomentosa (2018)
3.18. Spilanthes acmella (2018)
3.19. Athyrium multidentatum (2018)
3.20. Cardamine komarovii (2019)
3.21. Thalictrum minus (2020)
3.22. Rhodiola rosea (2020)
3.23. Lagerstroemia ovalifolia (2021)
3.24. Forsythia suspensa (2022)
3.25. Rhaponticum uniflorum (2022)
3.26. Hippophae rhamnoides (2022)
3.27. Ficus vasculosa (2022)
3.28. Azadirachta indica (2022)
3.29. Platycodon grandiflorum (2023)
3.30. Atractylodis rhizome (2023)
3.31. Quercus coccinea (2023)
3.32. Corydalis bungeana (2024)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Long, M.E.; Mallampalli, R.K.; Horowitz, J.C. Pathogenesis of pneumonia and acute lung injury. Clin. Sci. 2022, 136, 747–769. [Google Scholar] [CrossRef] [PubMed]
- Matthay, M.A.; Ware, L.B.; Zimmerman, G.A. The acute respiratory distress syndrome. J. Clin. Investig. 2012, 122, 2731–2740. [Google Scholar] [CrossRef] [PubMed]
- Force, A.D.T.; Ranieri, V.M.; Rubenfeld, G.D.; Thompson, B.T.; Ferguson, N.D.; Caldwell, E.; Fan, E.; Camporota, L.; Slutsky, A.S. Acute respiratory distress syndrome: The Berlin Definition. JAMA 2012, 307, 2526–2533. [Google Scholar] [CrossRef]
- Gallelli, L.; Zhang, L.; Wang, T.; Fu, F. Severe Acute Lung Injury Related to COVID-19 Infection: A Review and the Possible Role for Escin. J. Clin. Pharmacol. 2020, 60, 815–825. [Google Scholar] [CrossRef] [PubMed]
- Manicone, A.M. Role of the pulmonary epithelium and inflammatory signals in acute lung injury. Expert. Rev. Clin. Immunol. 2009, 5, 63–75. [Google Scholar] [CrossRef]
- Belperio, J.A.; Keane, M.P.; Burdick, M.D.; Londhe, V.; Xue, Y.Y.; Li, K.; Phillips, R.J.; Strieter, R.M. Critical role for CXCR2 and CXCR2 ligands during the pathogenesis of ventilator-induced lung injury. J. Clin. Investig. 2002, 110, 1703–1716. [Google Scholar] [CrossRef]
- Grommes, J.; Soehnlein, O. Contribution of neutrophils to acute lung injury. Mol. Med. 2011, 17, 293–307. [Google Scholar] [CrossRef]
- Tao, H.; Xu, Y.; Zhang, S. The Role of Macrophages and Alveolar Epithelial Cells in the Development of ARDS. Inflammation 2023, 46, 47–55. [Google Scholar] [CrossRef]
- Lee, J.W.; Chun, W.; Lee, H.J.; Min, J.H.; Kim, S.M.; Seo, J.Y.; Ahn, K.S.; Oh, S.R. The Role of Macrophages in the Development of Acute and Chronic Inflammatory Lung Diseases. Cells 2021, 10, 897. [Google Scholar] [CrossRef]
- Mubarak, R.A.; Roberts, N.; Mason, R.J.; Alper, S.; Chu, H.W. Comparison of pro- and anti-inflammatory responses in paired human primary airway epithelial cells and alveolar macrophages. Respir. Res. 2018, 19, 126. [Google Scholar] [CrossRef]
- Hiemstra, P.S.; Tetley, T.D.; Janes, S.M. Airway and alveolar epithelial cells in culture. Eur. Respir. J. 2019, 54, 1900742. [Google Scholar] [CrossRef] [PubMed]
- Sha, Q.; Truong-Tran, A.Q.; Plitt, J.R.; Beck, L.A.; Schleimer, R.P. Activation of airway epithelial cells by toll-like receptor agonists. Am. J. Respir. Cell Mol. Biol. 2004, 31, 358–364. [Google Scholar] [CrossRef] [PubMed]
- Dang, W.; Tao, Y.; Xu, X.; Zhao, H.; Zou, L.; Li, Y. The role of lung macrophages in acute respiratory distress syndrome. Inflamm. Res. 2022, 71, 1417–1432. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.W.; Park, H.A.; Kwon, O.K.; Park, J.W.; Lee, G.; Lee, H.J.; Lee, S.J.; Oh, S.R.; Ahn, K.S. NPS 2143, a selective calcium-sensing receptor antagonist inhibits lipopolysaccharide-induced pulmonary inflammation. Mol. Immunol. 2017, 90, 150–157. [Google Scholar] [CrossRef]
- Si, Z.; Zhang, B. Amygdalin Attenuates Airway Epithelium Apoptosis, Inflammation, and Epithelial-Mesenchymal Transition through Restraining the TLR4/NF-kappaB Signaling Pathway on LPS-Treated BEAS-2B Bronchial Epithelial Cells. Int. Arch. Allergy Immunol. 2021, 182, 997–1007. [Google Scholar] [CrossRef]
- Cao, C.; Yin, C.; Shou, S.; Wang, J.; Yu, L.; Li, X.; Chai, Y. Ulinastatin Protects Against LPS-Induced Acute Lung Injury By Attenuating TLR4/NF-kappaB Pathway Activation and Reducing Inflammatory Mediators. Shock 2018, 50, 595–605. [Google Scholar] [CrossRef]
- Crandall, E.D.; Matthay, M.A. Alveolar epithelial transport. Basic science to clinical medicine. Am. J. Respir. Crit. Care Med. 2001, 163, 1021–1029. [Google Scholar] [CrossRef]
- Gunther, A.; Ruppert, C.; Schmidt, R.; Markart, P.; Grimminger, F.; Walmrath, D.; Seeger, W. Surfactant alteration and replacement in acute respiratory distress syndrome. Respir. Res. 2001, 2, 353–364. [Google Scholar] [CrossRef]
- Zhao, L.; Zhang, Z.; Li, P.; Gao, Y.; Shi, Y. Bakuchiol regulates TLR4/MyD88/NF-kappaB and Keap1/Nrf2/HO-1 pathways to protect against LPS-induced acute lung injury in vitro and in vivo. Naunyn Schmiedebergs Arch. Pharmacol. 2023, 397, 3301–3312. [Google Scholar] [CrossRef]
- Luo, Y.; Che, W.; Zhao, M. Ulinastatin post-treatment attenuates lipopolysaccharide-induced acute lung injury in rats and human alveolar epithelial cells. Int. J. Mol. Med. 2017, 39, 297–306. [Google Scholar] [CrossRef]
- Chang, J.; Zhang, W. Remifentanil modulates the TLR4-mediated MMP-9/TIMP1 balance and NF-kappaB/STAT3 signaling in LPS-induced A549 cells. Exp. Ther. Med. 2023, 25, 79. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Jamal, M.; Guo, P.; Jin, Z.; Zheng, F.; Song, X.; Zhan, J.; Wu, H. Irisin alleviates pulmonary epithelial barrier dysfunction in sepsis-induced acute lung injury via activation of AMPK/SIRT1 pathways. Biomed. Pharmacother. 2019, 118, 109363. [Google Scholar] [CrossRef]
- Feng, G.; Sun, B.; Liu, H.X.; Liu, Q.H.; Zhao, L.; Wang, T.L. EphA2 antagonism alleviates LPS-induced acute lung injury via Nrf2/HO-1, TLR4/MyD88 and RhoA/ROCK pathways. Int. Immunopharmacol. 2019, 72, 176–185. [Google Scholar] [CrossRef] [PubMed]
- Chuquimia, O.D.; Petursdottir, D.H.; Periolo, N.; Fernandez, C. Alveolar epithelial cells are critical in protection of the respiratory tract by secretion of factors able to modulate the activity of pulmonary macrophages and directly control bacterial growth. Infect. Immun. 2013, 81, 381–389. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Zhang, L.; Joo, D.; Sun, S.C. NF-kappaB signaling in inflammation. Signal Transduct. Target. Ther. 2017, 2, 17023. [Google Scholar] [CrossRef]
- Gong, C.; Ma, J.; Deng, Y.; Liu, Q.; Zhan, Z.; Gan, H.; Xiang, X.; Zhang, M.; Cao, K.; Shen, T.; et al. S100A9(-/-) alleviates LPS-induced acute lung injury by regulating M1 macrophage polarization and inhibiting pyroptosis via the TLR4/MyD88/NFkappaB signaling axis. Biomed. Pharmacother. 2024, 172, 116233. [Google Scholar] [CrossRef]
- Lee, J.W.; Park, J.W.; Shin, N.R.; Park, S.Y.; Kwon, O.K.; Park, H.A.; Lim, Y.; Ryu, H.W.; Yuk, H.J.; Kim, J.H.; et al. Picrasma quassiodes (D. Don) Benn. attenuates lipopolysaccharide (LPS)-induced acute lung injury. Int. J. Mol. Med. 2016, 38, 834–844. [Google Scholar] [CrossRef]
- Li, X.; Huang, R.; Liu, K.; Li, M.; Luo, H.; Cui, L.; Huang, L.; Luo, L. Fucoxanthin attenuates LPS-induced acute lung injury via inhibition of the TLR4/MyD88 signaling axis. Aging 2020, 13, 2655–2667. [Google Scholar] [CrossRef]
- Pooladanda, V.; Thatikonda, S.; Muvvala, S.P.; Devabattula, G.; Godugu, C. BRD4 targeting nanotherapy prevents lipopolysaccharide induced acute respiratory distress syndrome. Int. J. Pharm. 2021, 601, 120536. [Google Scholar] [CrossRef]
- Han, S.; Gao, H.; Chen, S.; Wang, Q.; Li, X.; Du, L.J.; Li, J.; Luo, Y.Y.; Li, J.X.; Zhao, L.C.; et al. Procyanidin A1 Alleviates Inflammatory Response induced by LPS through NF-kappaB, MAPK, and Nrf2/HO-1 Pathways in RAW264.7 cells. Sci. Rep. 2019, 9, 15087. [Google Scholar] [CrossRef]
- Asehnoune, K.; Strassheim, D.; Mitra, S.; Kim, J.Y.; Abraham, E. Involvement of reactive oxygen species in Toll-like receptor 4-dependent activation of NF-kappa B. J. Immunol. 2004, 172, 2522–2529. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.A.; Farahvash, A.; Douda, D.N.; Licht, J.C.; Grasemann, H.; Sweezey, N.; Palaniyar, N. JNK Activation Turns on LPS- and Gram-Negative Bacteria-Induced NADPH Oxidase-Dependent Suicidal NETosis. Sci. Rep. 2017, 7, 3409. [Google Scholar] [CrossRef]
- Salzmann, M.; Gibler, P.; Haider, P.; Brekalo, M.; Plasenzotti, R.; Filip, T.; Nistelberger, R.; Hartmann, B.; Wojta, J.; Hengstenberg, C.; et al. Neutrophil extracellular traps induce persistent lung tissue damage via thromboinflammation without altering virus resolution in a mouse coronavirus model. J. Thromb. Haemost. 2024, 22, 188–198. [Google Scholar] [CrossRef]
- Scozzi, D.; Liao, F.; Krupnick, A.S.; Kreisel, D.; Gelman, A.E. The role of neutrophil extracellular traps in acute lung injury. Front. Immunol. 2022, 13, 953195. [Google Scholar] [CrossRef] [PubMed]
- Kawabata, K.; Hagio, T.; Matsuoka, S. The role of neutrophil elastase in acute lung injury. Eur. J. Pharmacol. 2002, 451, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Kreisel, D.; Nava, R.G.; Li, W.; Zinselmeyer, B.H.; Wang, B.; Lai, J.; Pless, R.; Gelman, A.E.; Krupnick, A.S.; Miller, M.J. In vivo two-photon imaging reveals monocyte-dependent neutrophil extravasation during pulmonary inflammation. Proc. Natl. Acad. Sci. USA 2010, 107, 18073–18078. [Google Scholar] [CrossRef] [PubMed]
- Dhaliwal, K.; Scholefield, E.; Ferenbach, D.; Gibbons, M.; Duffin, R.; Dorward, D.A.; Morris, A.C.; Humphries, D.; MacKinnon, A.; Wilkinson, T.S.; et al. Monocytes control second-phase neutrophil emigration in established lipopolysaccharide-induced murine lung injury. Am. J. Respir. Crit. Care Med. 2012, 186, 514–524. [Google Scholar] [CrossRef] [PubMed]
- Jahromi, B.; Pirvulescu, I.; Candido, K.D.; Knezevic, N.N. Herbal Medicine for Pain Management: Efficacy and Drug Interactions. Pharmaceutics 2021, 13, 251. [Google Scholar] [CrossRef]
- Zhao, J.; Deng, J.W.; Chen, Y.W.; Li, S.P. Advanced phytochemical analysis of herbal tea in China. J. Chromatogr. A 2013, 1313, 2–23. [Google Scholar] [CrossRef]
- Gao, S.M.; Liu, J.S.; Wang, M.; Cao, T.T.; Qi, Y.D.; Zhang, B.G.; Sun, X.B.; Liu, H.T.; Xiao, P.G. Traditional uses, phytochemistry, pharmacology and toxicology of Codonopsis: A review. J. Ethnopharmacol. 2018, 219, 50–70. [Google Scholar] [CrossRef]
- Huang, C.H.; Yang, M.L.; Tsai, C.H.; Li, Y.C.; Lin, Y.J.; Kuan, Y.H. Ginkgo biloba leaves extract (EGb 761) attenuates lipopolysaccharide-induced acute lung injury via inhibition of oxidative stress and NF-kappaB-dependent matrix metalloproteinase-9 pathway. Phytomedicine 2013, 20, 303–309. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Tian, Y.; Qu, S.; Cao, Y.; Li, S.; Zhang, W.; Zhang, Z.; Zhang, N.; Fu, Y. Protective effect of TM6 on LPS-induced acute lung injury in mice. Sci. Rep. 2017, 7, 572. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Stripay, J.L.; Zhang, X.; Collage, R.D.; Hulver, M.; Carchman, E.H.; Howell, G.M.; Zuckerbraun, B.S.; Lee, J.S.; Rosengart, M.R. CaMKIalpha regulates AMP kinase-dependent, TORC-1-independent autophagy during lipopolysaccharide-induced acute lung neutrophilic inflammation. J. Immunol. 2013, 190, 3620–3628. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Park, J.W.; Choi, J.; Yun, S.H.; Rhee, B.H.; Jeong, H.J.; Kim, H.; Lee, K.; Ahn, K.S.; Jeong, H.G.; et al. Aromadendrin Inhibits Lipopolysaccharide-Induced Inflammation in BEAS-2B Cells and Lungs of Mice. Biomol. Ther. 2024, 32, 546–555. [Google Scholar] [CrossRef] [PubMed]
- Han, C.W.; Kwun, M.J.; Kim, K.H.; Choi, J.Y.; Oh, S.R.; Ahn, K.S.; Lee, J.H.; Joo, M. Ethanol extract of Alismatis Rhizoma reduces acute lung inflammation by suppressing NF-kappaB and activating Nrf2. J. Ethnopharmacol. 2013, 146, 402–410. [Google Scholar] [CrossRef]
- Shim, D.W.; Han, J.W.; Sun, X.; Jang, C.H.; Koppula, S.; Kim, T.J.; Kang, T.B.; Lee, K.H. Lysimachia clethroides Duby extract attenuates inflammatory response in Raw 264.7 macrophages stimulated with lipopolysaccharide and in acute lung injury mouse model. J. Ethnopharmacol. 2013, 150, 1007–1015. [Google Scholar] [CrossRef]
- Shin, N.R.; Shin, I.S.; Song, H.H.; Hong, J.M.; Kwon, O.K.; Jeon, C.M.; Kim, J.H.; Lee, S.W.; Lee, J.K.; Jin, H.; et al. Callicarpa japonica Thunb. reduces inflammatory responses: A mouse model of lipopolysaccharide-induced acute lung injury. Int. Immunopharmacol. 2015, 26, 174–180. [Google Scholar] [CrossRef]
- Hu, W.; Wu, L.; Qiang, Q.; Ji, L.; Wang, X.; Luo, H.; Wu, H.; Jiang, Y.; Wang, G.; Shen, T. The dichloromethane fraction from Mahonia bealei (Fort.) Carr. leaves exerts an anti-inflammatory effect both in vitro and in vivo. J. Ethnopharmacol. 2016, 188, 134–143. [Google Scholar] [CrossRef]
- Wang, X.; Yang, Q.L.; Shi, Y.Z.; Hou, B.Y.; Yang, S.Q.; Huang, H.; Zhang, L.; Du, G.H. Protective Effects of the Ethanol Extract of Viola tianshanica Maxim against Acute Lung Injury Induced by Lipopolysaccharides in Mice. J. Microbiol. Biotechnol. 2017, 27, 1628–1638. [Google Scholar] [CrossRef]
- Lee, J.W.; Seo, K.H.; Ryu, H.W.; Yuk, H.J.; Park, H.A.; Lim, Y.; Ahn, K.S.; Oh, S.R. Anti-inflammatory effect of stem bark of Paulownia tomentosa Steud. in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages and LPS-induced murine model of acute lung injury. J. Ethnopharmacol. 2018, 210, 23–30. [Google Scholar] [CrossRef]
- Kim, K.H.; Kim, E.J.; Kwun, M.J.; Lee, J.Y.; Bach, T.T.; Eum, S.M.; Choi, J.Y.; Cho, S.; Kim, S.J.; Jeong, S.I.; et al. Suppression of lung inflammation by the methanol extract of Spilanthes acmella Murray is related to differential regulation of NF-kappaB and Nrf2. J. Ethnopharmacol. 2018, 217, 89–97. [Google Scholar] [CrossRef] [PubMed]
- Park, J.W.; Park, J.M.; Eum, S.; Kim, J.H.; Oh, J.H.; Choi, J.; Bach, T.T.; Sinh, N.V.; Choi, S.; Ahn, K.S.; et al. Ficus vasculosa Wall. ex Miq. Inhibits the LPS-Induced Inflammation in RAW264.7 Macrophages. Microbiol. Biotechnol. Lett. 2022, 50, 574–583. [Google Scholar] [CrossRef]
- Lim, H.J.; Lee, J.H.; Choi, J.S.; Lee, S.K.; Kim, Y.S.; Kim, H.P. Inhibition of airway inflammation by the roots of Angelica decursiva and its constituent, columbianadin. J. Ethnopharmacol. 2014, 155, 1353–1361. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Woo, J.; Lyu, J.H.; Song, H.H.; Jeong, H.S.; Ha, K.T.; Choi, J.Y.; Han, C.W.; Ahn, K.S.; Oh, S.R.; et al. Carthami Flos suppresses neutrophilic lung inflammation in mice, for which nuclear factor-erythroid 2-related factor-1 is required. Phytomedicine 2014, 21, 470–478. [Google Scholar] [CrossRef]
- Sun, X.; Shim, D.W.; Han, J.W.; Shin, W.Y.; Sim, E.J.; Kim, M.K.; Heo, K.H.; Kim, Y.K.; Koppula, S.; Kim, T.J.; et al. Anti-inflammatory effect of Impatiens textori Miq. extract via inhibition of NLRP3 inflammasome activation in in vitro and in vivo experimental models. J. Ethnopharmacol. 2015, 170, 81–87. [Google Scholar] [CrossRef]
- Kang, H.; Bang, T.S.; Lee, J.W.; Lew, J.H.; Eom, S.H.; Lee, K.; Choi, H.Y. Protective effect of the methanol extract from Cryptotaenia japonica Hassk. against lipopolysaccharide-induced inflammation in vitro and in vivo. BMC Complement. Altern. Med. 2012, 12, 199. [Google Scholar] [CrossRef] [PubMed]
- Han, X.Z.; Ma, R.; Chen, Q.; Jin, X.; Jin, Y.Z.; An, R.B.; Piao, X.M.; Lian, M.L.; Quan, L.H.; Jiang, J. Anti-inflammatory action of Athyrium multidentatum extract suppresses the LPS-induced TLR4 signaling pathway. J. Ethnopharmacol. 2018, 217, 220–227. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Zhang, K.X.; Li, T.Y.; Piao, X.M.; Lian, M.L.; An, R.B.; Jiang, J. Cardamine komarovii flower extract reduces lipopolysaccharide-induced acute lung injury by inhibiting MyD88/TRIF signaling pathways. Chin. J. Nat. Med. 2019, 17, 461–468. [Google Scholar] [CrossRef]
- Liou, C.J.; Huang, Y.L.; Huang, W.C.; Yeh, K.W.; Huang, T.Y.; Lin, C.F. Water extract of Helminthostachys zeylanica attenuates LPS-induced acute lung injury in mice by modulating NF-kappaB and MAPK pathways. J. Ethnopharmacol. 2017, 199, 30–38. [Google Scholar] [CrossRef]
- Chen, J.; Wang, J.B.; Yu, C.H.; Chen, L.Q.; Xu, P.; Yu, W.Y. Total flavonoids of Mosla scabra leaves attenuates lipopolysaccharide-induced acute lung injury via down-regulation of inflammatory signaling in mice. J. Ethnopharmacol. 2013, 148, 835–841. [Google Scholar] [CrossRef]
- Lee, C.Y.; Yang, J.J.; Lee, S.S.; Chen, C.J.; Huang, Y.C.; Huang, K.H.; Kuan, Y.H. Protective effect of Ginkgo biloba leaves extract, EGb761, on endotoxin-induced acute lung injury via a JNK- and Akt-dependent NFkappaB pathway. J. Agric. Food Chem. 2014, 62, 6337–6344. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Luo, L.; Zhao, X.; Xue, X.; Liao, L.; Deng, Y.; Zhou, M.; Peng, C.; Li, Y. Forsythiae Fructuse extracts alleviates LPS-induced acute lung injury in mice by regulating PPAR-gamma/RXR-alpha in lungs and colons. J. Ethnopharmacol. 2022, 293, 115322. [Google Scholar] [CrossRef] [PubMed]
- Kao, S.T.; Liu, C.J.; Yeh, C.C. Protective and immunomodulatory effect of flos Lonicerae japonicae by augmenting IL-10 expression in a murine model of acute lung inflammation. J. Ethnopharmacol. 2015, 168, 108–115. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.; Zhu, L.; Wang, J.; He, H.; Chang, X.; Gao, J.; Shumin, W.; Yan, T. Anti-inflammatory effects of water extract of Taraxacum mongolicum hand.-Mazz on lipopolysaccharide-induced inflammation in acute lung injury by suppressing PI3K/Akt/mTOR signaling pathway. J. Ethnopharmacol. 2015, 168, 349–355. [Google Scholar] [CrossRef]
- Zhen, D.; Liu, C.; Huang, T.; Fu, D.; Bai, X.; Ma, Q.; Jiang, M.; Gong, G. Ethanol extracts of Rhaponticum uniflorum (L.) DC inflorescence ameliorate LPS-mediated acute lung injury by alleviating inflammatory responses via the Nrf2/HO-1 signaling pathway. J. Ethnopharmacol. 2022, 296, 115497. [Google Scholar] [CrossRef]
- El-Sayed, E.K.; Ibrahim, R.R.; Ahmed, A.A.; Khattab, M.A.; Chen, L.Y.; Lai, K.H.; Shaarawy, F.S.E.; Tawfik, N.F.; Moharram, F.A. Quercus coccinea Munchh leaves polyphenols: Appraisal acute lung injury induced by lipopolysaccharide in mice. Biomed. Pharmacother. 2023, 164, 114765. [Google Scholar] [CrossRef]
- Li, Q.; Xiang, Y.; Zhang, Z.; Qu, X.; Wu, J.; Fu, J.; Zhu, F.; Tang, H. An integrated RNA-Seq and network pharmacology approach for exploring the preventive effect of Corydalis bungeana Turcz. Extract and Acetylcorynoline on LPS-induced acute lung injury. J. Ethnopharmacol. 2024, 318, 117048. [Google Scholar] [CrossRef]
- Badamjav, R.; Sonom, D.; Wu, Y.; Zhang, Y.; Kou, J.; Yu, B.; Li, F. The protective effects of Thalictrum minus L. on lipopolysaccharide-induced acute lung injury. J. Ethnopharmacol. 2020, 248, 112355. [Google Scholar] [CrossRef]
- Min, J.H.; Kim, S.M.; Park, J.W.; Kwon, N.H.; Goo, S.H.; Ngatinem; Ningsih, S.; Paik, J.H.; Choi, S.; Oh, S.R.; et al. Lagerstroemia ovalifolia Exerts Anti- Inflammatory Effects in Mice of LPSInduced ALI via Downregulating of MAPK and NF-kappaB Activation. J. Microbiol. Biotechnol. 2021, 31, 1501–1507. [Google Scholar] [CrossRef]
- Zhou, Y.; Jin, T.; Gao, M.; Luo, Z.; Mutahir, S.; Shi, C.; Xie, T.; Lin, L.; Xu, J.; Liao, Y.; et al. Aqueous extract of Platycodon grandiflorus attenuates lipopolysaccharide-induced apoptosis and inflammatory cell infiltration in mouse lungs by inhibiting PI3K/Akt signaling. Chin. Med. 2023, 18, 36. [Google Scholar] [CrossRef]
- Du, L.L.; Liu, Y.; Wan, L.; Chen, C.; Fan, G. Seabuckthorn Berries Extract Attenuates Pulmonary Vascular Hyperpermeability in Lipopolysaccharide-Induced Acute Lung Injury in Mice. Chin. J. Integr. Med. 2022, 28, 1081–1087. [Google Scholar] [CrossRef] [PubMed]
- Shi, K.; Wang, Y.; Xiao, Y.; Tu, J.; Zhou, Z.; Cao, G.; Liu, Y. Therapeutic effects and mechanism of Atractylodis rhizoma in acute lung injury: Investigation based on an Integrated approach. Front. Pharmacol. 2023, 14, 1181951. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Yu, C.; Yan, Y.; Chen, J.; Zhang, C.; Wen, X. Antiviral flavonoids from Mosla scabra. Fitoterapia 2010, 81, 429–433. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Terreaux, C.; Marston, A.; Tan, R.X.; Hostettmann, K. Lignans from Mosla scabra. Phytochemistry 2000, 54, 909–912. [Google Scholar] [CrossRef]
- Zhu, G.F.; Guo, H.J.; Huang, Y.; Wu, C.T.; Zhang, X.F. Eriodictyol, a plant flavonoid, attenuates LPS-induced acute lung injury through its antioxidative and anti-inflammatory activity. Exp. Ther. Med. 2015, 10, 2259–2266. [Google Scholar] [CrossRef]
- Wang, X.; Deng, R.; Dong, J.; Huang, L.; Li, J.; Zhang, B. Eriodictyol ameliorates lipopolysaccharide-induced acute lung injury by suppressing the inflammatory COX-2/NLRP3/NF-kappaB pathway in mice. J. Biochem. Mol. Toxicol. 2020, 34, e22434. [Google Scholar] [CrossRef]
- Zhang, Q.; Shu, X.; Jing, F.; Wang, X.; Lin, C.; Luo, A. Preparative separation of alkaloids from Picrasma quassioides (D. Don) Benn. by conventional and pH-zone-refining countercurrent chromatography. Molecules 2014, 19, 8752–8761. [Google Scholar] [CrossRef]
- Zheng, L.; Su, J.; Zhang, Z.; Jiang, L.; Wei, J.; Xu, X.; Lv, S. Salidroside regulates inflammatory pathway of alveolar macrophages by influencing the secretion of miRNA-146a exosomes by lung epithelial cells. Sci. Rep. 2020, 10, 20750. [Google Scholar] [CrossRef]
- Meng, L.; Liao, X.; Wang, Y.; Chen, L.; Gao, W.; Wang, M.; Dai, H.; Yan, N.; Gao, Y.; Wu, X.; et al. Pharmacologic therapies of ARDS: From natural herb to nanomedicine. Front. Pharmacol. 2022, 13, 930593. [Google Scholar] [CrossRef]
- Zhang, S.; Gao, W.; Xu, K.; Guo, Y.; Lin, S.; Xue, X.; Lu, G.; Li, N.; Liu, H.; Liu, W. [Early use of Chinese drug rhodiola compound for patients with post-trauma and inflammation in prevention of ALI/ARDS]. Zhonghua Wai Ke Za Zhi 1999, 37, 238–240. [Google Scholar]
- Mahfuzul Hoque, M.D.; Bari, M.L.; Inatsu, Y.; Juneja, V.K.; Kawamoto, S. Antibacterial activity of guava (Psidium guajava L.) and Neem (Azadirachta indica A. Juss.) extracts against foodborne pathogens and spoilage bacteria. Foodborne Pathog. Dis. 2007, 4, 481–488. [Google Scholar] [CrossRef] [PubMed]
- Borkotoky, S.; Banerjee, M. A computational prediction of SARS-CoV-2 structural protein inhibitors from Azadirachta indica (Neem). J. Biomol. Struct. Dyn. 2021, 39, 4111–4121. [Google Scholar] [CrossRef] [PubMed]
- Foka, F.E.T.; Manamela, N.; Mufamadi, S.M.; Mufhandu, H.T. Potential of Azadirachta indica as a Capping Agent for Antiviral Nanoparticles against SARS-CoV-2. Biomed. Res. Int. 2022, 2022, 5714035. [Google Scholar] [CrossRef] [PubMed]
- Baildya, N.; Khan, A.A.; Ghosh, N.N.; Dutta, T.; Chattopadhyay, A.P. Screening of potential drug from Azadirachta Indica (Neem) extracts for SARS-CoV-2: An insight from molecular docking and MD-simulation studies. J. Mol. Struct. 2021, 1227, 129390. [Google Scholar] [CrossRef]
- Pooladanda, V.; Thatikonda, S.; Bale, S.; Pattnaik, B.; Sigalapalli, D.K.; Bathini, N.B.; Singh, S.B.; Godugu, C. Nimbolide protects against endotoxin-induced acute respiratory distress syndrome by inhibiting TNF-alpha mediated NF-kappaB and HDAC-3 nuclear translocation. Cell Death Dis. 2019, 10, 81. [Google Scholar] [CrossRef]
- Pooladanda, V.; Thatikonda, S.; Sunnapu, O.; Tiwary, S.; Vemula, P.K.; Talluri, M.; Godugu, C. iRGD conjugated nimbolide liposomes protect against endotoxin induced acute respiratory distress syndrome. Nanomedicine 2021, 33, 102351. [Google Scholar] [CrossRef]
RAW264.7 cells (Murine macrophages) | ||||
Plant source | POP | Stimulator | Inhibition effect | Reference |
Alismatis rhizoma | LPS (0.1 μg/mL) | IL-1β, iNOS, COX-2 | [45] | |
Lysimachia clethroide | Whole | LPS (0.1 μg/mL) | IL-1β, IL-6, NO, iNOS | [46] |
Callicarpa japonica | Leaf stem | LPS (0.5 μg/mL) | IL-6, NO, iNOS | [47] |
Mahonia bealei | Leaf | LPS (1.0 μg/mL) | TNF-α, NO, PGE2, iNOS, COX-2 | [48] |
Picrasma quassiodes | Stem bark | LPS (0.5 μg/mL) | L-6, TNF-α, MCP-1 | [27] |
Viola tianshanica | LPS (1.0 μg/mL) | IL-1β, IL-6, TNF-α, NO, PGE2 | [49] | |
Paulownia tomentosa | Stem bark | LPS (0.5 μg/mL) | IL-6, TNF-α | [50] |
Spilanthes acmella | Whole | LPS (1.0 μg/mL) | IL-1β, IL-6, TNF-α | [51] |
Ficus vasculosa | LPS (0.5 μg/mL) | IL-1β, IL-6, TNF-α, iNOS, COX-2 | [52] | |
MH-S cells (Murine alveolar macrophages) | ||||
Plant source | POP | Stimulator | Inhibition effect | Reference |
Angelica decursiva | Root | LPS (0.1 μg/mL) | NO, iNOS | [53] |
Bone marrow-derived macrophages | ||||
Plant source | POP | Stimulator | Inhibition effect | Reference |
Carthamus tinctorius | LPS (0.1 μg/mL) | IL-1β, TNF-α, COX-2 | [54] | |
Impatiens textori | Whole | LPS (10 ng/mL) | IL-1β | [55] |
Peritoneal macrophages | ||||
Plant source | POP | Stimulator | Inhibition effect | Reference |
Cryptotaenia japonica | Aerial | LPS (0.1 μg/mL) | IL-6, IL-12, TNF-α | [56] |
Athyrium multidentatum | Aerial | LPS (0.1 μg/mL) | IL-1β, IL-6, TNF-α, NO, PGE2, iNOS, COX-2 | [57] |
Cardamine komarovii | Flower | LPS (100 g/mL) | NO, PGE2, iNOS, COX-2 | [58] |
THP-1 cells (Human monocytic cells) | ||||
Plant source | POP | Stimulator | Inhibition effect | Reference |
Helminthostachys zeylanica | Root | LPS (1 μg/mL) | ICAM-1 | [59] |
A549 cells (Human alveolar epithelial cells) | ||||
Plant source | POP | Stimulator | Inhibition effect | Reference |
Angelica decursiva | Root | IL-1β (10 ng/mL) | IL-6 | [53] |
Helminthostachys zeylanica | Root | LPS (1.0 μg/mL) | IL-6, IL-8, CCL-5, MCP-1 | [59] |
Ficus vasculosa | LPS (10 μg/mL) | IL-1β, IL-6, TNF-α | [52] |
(a) | ||||
ICR mice | ||||
Plant source | POP | Stimulator | Inhibition effect | Reference |
Mosla scabra | Leaf | LPS (0.5 mg/kg) | IL-1β, IL-6, TNF-α, MPO, NO | [60] |
Ginkgo biloba | Leaf | LPS (100 μg) | MPO, MDA, MMP-9 | [41] |
Ginkgo biloba | Leaf | LPS (100 μg) | IL-6, TNF-α, MIP-2, iNOS, COX-2 | [61] |
Forsythia suspensa | Fruit | LPS (5.0 mg/kg) | IL-1β, IL-6, TNF-α | [62] |
BALB/c mice | ||||
Plant source | POP | Stimulator | Inhibition effect | Reference |
Cryptotaenia japonica | Aerial | LPS (1.3 mg/kg) | IL-6, TNF-α | [56] |
Lysimachia clethroide | Whole | LPS (5.0 mg/kg) | IL-6 | [46] |
Lonicerae japonicae | LPS (100 pg/kg) | IL-6, TNF-α, NO, iNOS | [63] | |
Taraxacum mongolicum | IL-6, TNF-α, MPO | [64] | ||
Impatiens textori | Whole | LPS (5.0 mg/kg) | IL-1β | [55] |
Helminthostachys zeylanica | Root | LPS (1.0 μg/mL) | IL-1β, IL-6, TNF-α, CCL-5, MCP-1, ICAM-1 | [59] |
Viola tianshanica | LPS (300 μg) | IL-6, TNF-α | [49] | |
Athyrium multidentatum | Aerial | LPS (5.0 mg/kg) | IL-1β, IL-6, TNF-α, NO | [57] |
Rhaponticum uniflorum | LPS (5.0 mg/kg) | IL-6, TNF-α, MDA, iNOS, COX-2 | [65] | |
Quercus coccinea | Leaf | LPS (10 mg/kg) | IL-1β, TNF-α, HMGB-1 | [66] |
Corydalis bungeana | Whole | LPS (5.0 mg/kg) | IL-1β, IL-6, IL-18 | [67] |
(b) | ||||
C57BL/6 mice | ||||
Plant source | POP | Stimulator | Inhibition effect | Reference |
Alismatis rhizoma | LPS (0.01 g/kg) | IL-1β, iNOS, COX-2 | [45] | |
Callicarpa japonica | Leaf stem | LPS (20 μg) | IL-6, iNOS | [47] |
Mahonia bealei | Leaf | LPS (10 μg) | IL-6, TNF-α | [48] |
Picrasma quassiodes | Stem bark | LPS (10 μg) | L-6, TNF-α, iNOS | [27] |
Paulownia tomentosa | Stem bark | LPS (10 μg) | IL-6, TNF-α, MCP-1, iNOS, ROS | [50] |
Spilanthes acmella | Whole | LPS (2.0 mg/kg) | IL-1β, IL-6, TNF-α, MPO | [51] |
Thalictrum minus | Aerial | LPS (5.0 mg/kg) | IL-1β, TNF-α, NO | [68] |
Lagerstroemia ovalifolia | Leaf | LPS (0.5 mg/kg) | IL-6, TNF-α, MCP-1, iNOS, COX-2 | [69] |
Ficus vasculosa | LPS (0.5 mg/kg) | IL-1β, IL-6, TNF-α, MCP-1 | [52] | |
Platycodon grandiflorum | Root | LPS (3.0 mg/kg) | IL-1β, IL-6, TNF-α | [70] |
Kunming mice | ||||
Plant source | POP | Stimulator | Inhibition effect | Reference |
Hippophae rhamnoides | Berry | LPS (10 mg/kg) | IL-6, TNF-α, ICAM-1 | [71] |
Sprague Dawley (SD) rats | ||||
Plant source | POP | Stimulator | Inhibition effect | Reference |
Atractylodis rhizome | LPS (5.0 mg/kg) | IL-1β, IL-6, TNF-α, MCP-1 | [72] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.-W.; Lee, H.J.; Yun, S.H.; Lee, J.; Kim, H.; Kang, H.Y.; Ahn, K.-S.; Chun, W. Medicinal Herbal Extracts: Therapeutic Potential in Acute Lung Injury. Future Pharmacol. 2024, 4, 700-715. https://doi.org/10.3390/futurepharmacol4040037
Lee J-W, Lee HJ, Yun SH, Lee J, Kim H, Kang HY, Ahn K-S, Chun W. Medicinal Herbal Extracts: Therapeutic Potential in Acute Lung Injury. Future Pharmacology. 2024; 4(4):700-715. https://doi.org/10.3390/futurepharmacol4040037
Chicago/Turabian StyleLee, Jae-Won, Hee Jae Lee, Seok Han Yun, Juhyun Lee, Hyueyun Kim, Ha Yeong Kang, Kyung-Seop Ahn, and Wanjoo Chun. 2024. "Medicinal Herbal Extracts: Therapeutic Potential in Acute Lung Injury" Future Pharmacology 4, no. 4: 700-715. https://doi.org/10.3390/futurepharmacol4040037
APA StyleLee, J.-W., Lee, H. J., Yun, S. H., Lee, J., Kim, H., Kang, H. Y., Ahn, K.-S., & Chun, W. (2024). Medicinal Herbal Extracts: Therapeutic Potential in Acute Lung Injury. Future Pharmacology, 4(4), 700-715. https://doi.org/10.3390/futurepharmacol4040037