Could Cariprazine Be a Possible Choice for High Functioning Autism? A Case Report
Abstract
:1. Introduction
2. Treatment of HFA with “Third” Generation Antipsychotics: An Overview of the Current Literature
3. Clinical Case
- Q-LES-Q-SF (Quality of Life Enjoyment and Satisfaction Questionnaire—Short Form) is a recovery-oriented, self-report measure with an uncertain underlying factor structure, variously reported in the literature to consist of either one or two domains [32].
- BIS11 (Barratt Impulsiveness Scale) is the most frequently used measure among various self-report questionnaires of impulsivity, exploring 30 items in order to increase construct validity and to improve psychometric characteristics [33].
- BPRS 4.0 (Brief Psychiatric Rating Scale Vers 4.0) enables the rater to measure psychopathology severity and it is characterized by 24 items [34].
- RAADS-R (Ritvo Autism Asperger’s Diagnostic Scale-Revised) is a valid and reliable instrument to assist in the diagnosis of ASD in adults. It includes 80 items whose 16 questions describing non symptomatic (normative) behaviors [35].
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kana, R.K.; Uddin, L.Q.; Kenet, T.; Chugani, D.; Müller, R.A. Brain connectivity in autism. Front. Hum. Neurosci. 2014, 8, 349. [Google Scholar] [CrossRef] [PubMed]
- Masini, E.; Loi, E.; Vega-Benedetti, A.F.; Carta, M.; Doneddu, G.; Fadda, R.; Zavattari, P. An Overview of the Main Genetic, Epigenetic and Environmental Factors Involved in Autism Spectrum Disorder Focusing on Synaptic Activity. Int. J. Mol. Sci. 2020, 21, 8290. [Google Scholar] [CrossRef] [PubMed]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 3rd ed.; American Psychiatric Association: Washington, DC, USA, 1980.
- Howlin, P. Adults with Autism: Changes in Understanding Since DSM-111. J. Autism Dev. Disord. 2021, 51, 4291–4308. [Google Scholar] [CrossRef] [PubMed]
- de Giambattista, C.; Ventura, P.; Trerotoli, P.; Margari, M.; Palumbi, R.; Margari, L. Subtyping the Autism Spectrum Disorder: Comparison of Children with High Functioning Autism and Asperger Syndrome. J. Autism Dev. Disord. 2019, 49, 138–150. [Google Scholar] [CrossRef] [PubMed]
- Schmitt, L.M.; Smith, E.G.; Pedapati, E.V.; Horn, P.S.; Will, M.; Lamy, M.; Barber, L.; Trebley, J.; Meyer, K.; Heiman, M.; et al. Results of a phase Ib study of SB-121, an investigational probiotic formulation, a randomized controlled trial in participants with autism spectrum disorder. Sci. Rep. 2023, 13, 5192. [Google Scholar] [CrossRef]
- Singh, K.; Connors, S.L.; Macklin, E.A.; Smith, K.D.; Fahey, J.W.; Talalay, P.; Zimmerman, A.W. Sulforaphane treatment of autism spectrum disorder (ASD). Proc. Natl. Acad. Sci. USA 2014, 111, 15550–15555. [Google Scholar] [CrossRef]
- Howlin, P.; Magiati, I.; Charman, T. Systematic review of early intensive behavioral interventions for children with autism. Am. J. Intellect. Dev. Disabil. 2009, 114, 23–41. [Google Scholar] [CrossRef]
- DeFilippis, M.; Wagner, K.D. Treatment of Autism Spectrum Disorder in Children and Adolescents. Psychopharmacol. Bull. 2016, 46, 18–41. [Google Scholar]
- Lyall, K.; Croen, L.; Daniels, J.; Fallin, M.D.; Ladd-Acosta, C.; Lee, B.K.; Park, B.Y.; Snyder, N.W.; Schendel, D.; Volk, H.; et al. The Changing Epidemiology of Autism Spectrum Disorders. Annu. Rev. Public Health 2017, 38, 81–102. [Google Scholar] [CrossRef]
- Zerbo, O.; Iosif, A.M.; Walker, C.; Ozonoff, S.; Hansen, R.L.; Hertz-Picciotto, I. Is maternal influenza or fever during pregnancy associated with autism or developmental delays? Results from the CHARGE (CHildhood Autism Risks from Genetics and Environment) study. J. Autism Dev. Disord. 2013, 43, 25–33. [Google Scholar] [CrossRef]
- Gardener, H.; Spiegelman, D.; Buka, S.L. Prenatal risk factors for autism: Comprehensive meta-analysis. Br. J. Psychiatry J. Ment. Sci. 2009, 195, 7–14. [Google Scholar] [CrossRef] [PubMed]
- Havdahl, A.; Niarchou, M.; Starnawska, A.; Uddin, M.; van der Merwe, C.; Warrier, V. Genetic contributions to autism spectrum disorder. Psychol. Med. 2021, 51, 2260–2273. [Google Scholar] [CrossRef] [PubMed]
- Dichter, G.S.; Damiano, C.A.; Allen, J.A. Reward circuitry dysfunction in psychiatric and neurodevelopmental disorders and genetic syndromes: Animal models and clinical findings. J. Neurodev. Disord. 2012, 4, 19. [Google Scholar] [CrossRef] [PubMed]
- Scott-Van Zeeland, A.A.; Dapretto, M.; Ghahremani, D.G.; Poldrack, R.A.; Bookheimer, S.Y. Reward processing in autism. Autism Res. Off. J. Int. Soc. Autism Res. 2010, 3, 53–67. [Google Scholar] [CrossRef] [PubMed]
- Herborg, F.; Andreassen, T.F.; Berlin, F.; Loland, C.J.; Gether, U. Neuropsychiatric disease-associated genetic variants of the dopamine transporter display heterogeneous molecular phenotypes. J. Biol. Chem. 2018, 293, 7250–7262. [Google Scholar] [CrossRef] [PubMed]
- DiCarlo, G.E.; Aguilar, J.I.; Matthies, H.J.; Harrison, F.E.; Bundschuh, K.E.; West, A.; Hashemi, P.; Herborg, F.; Rickhag, M.; Chen, H.; et al. Autism-linked dopamine transporter mutation alters striatal dopamine neurotransmission and dopamine-dependent behaviors. J. Clin. Investig. 2019, 129, 3407–3419. [Google Scholar] [CrossRef] [PubMed]
- Fieiras, C.; Chen, M.H.; Liquitay, C.M.E.; Meza, N.; Rojas, V.; Franco, J.V.A.; Madrid, E. Risperidone and aripiprazole for autism spectrum disorder in children: An overview of systematic reviews. BMJ Evid Based Med. 2023, 28, 7–14. [Google Scholar] [CrossRef]
- Kanno, M.; Matsumoto, M.; Togashi, H.; Yoshioka, M.; Mano, Y. Effects of acute repetitive transcranial magnetic stimulation on dopamine release in the rat dorsolateral striatum. J. Neurol. Sci. 2004, 217, 73–81. [Google Scholar] [CrossRef]
- Hameed, M.Q.; Dhamne, S.C.; Gersner, R.; Kaye, H.L.; Oberman, L.M.; Pascual-Leone, A.; Rotenberg, A. Transcranial Magnetic and Direct Current Stimulation in Children. Curr. Neurol. Neurosci. Rep. 2017, 17, 11. [Google Scholar] [CrossRef]
- Ceccanti, M.; Inghilleri, M.; Attilia, M.L.; Raccah, R.; Fiore, M.; Zangen, A.; Ceccanti, M. Deep TMS on alcoholics: Effects on cortisolemia and dopamine pathway modulation. A pilot study. Can. J. Physiol. Pharmacol. 2015, 93, 283–290. [Google Scholar] [CrossRef]
- Shaul, U.; Ben-Shachar, D.; Karry, R.; Klein, E. Modulation of frequency and duration of repetitive magnetic stimulation affects catecholamine levels and tyrosine hydroxylase activity in human neuroblastoma cells: Implication for the antidepressant effect of rTMS. Int. J. Neuropsychopharmacol. 2003, 6, 233–241. [Google Scholar] [CrossRef] [PubMed]
- Kuroki, T.; Nagao, N.; Nakahara, T. Neuropharmacology of second-generation antipsychotic drugs: A validity of the serotonin-dopamine hypothesis. Prog. Brain Res. 2008, 172, 199–212. [Google Scholar] [PubMed]
- Pandina, G.J.; Bossie, C.A.; Youssef, E.; Zhu, Y.; Dunbar, F. Risperidone improves behavioral symptoms in children with autism in a randomized, double-blind, placebo-controlled trial. J. Autism Dev. Disord. 2007, 37, 367–373. [Google Scholar] [CrossRef] [PubMed]
- Sochocky, N.; Milin, R. Second generation antipsychotics in Asperger’s Disorder and high functioning autism: A systematic review of the literature and effectiveness of meta-analysis. Curr. Clin. Pharmacol. 2013, 8, 370–379. [Google Scholar] [CrossRef] [PubMed]
- Mandic-Maravic, V.; Grujicic, R.; Milutinovic, L.; Munjiza-Jovanovic, A.; Pejovic-Milovancevic, M. Dopamine in Autism Spectrum Disorders—Focus on D2/D3 Partial Agonists and Their Possible Use in Treatment. Front. Psychiatry 2022, 12, 787097. [Google Scholar] [CrossRef] [PubMed]
- Poweleit, E.A.; Colestock, M.; Kantemneni, E.C.; Strawn, J.R.; Patino, L.R.; Delbello, M.P.; Ramsey, L.B. Cariprazine in Youth with Bipolar and Psychotic Disorders: A Retrospective Chart Review. J. Child Adolesc. Psychopharmacol. 2020, 30, 267–272. [Google Scholar] [CrossRef]
- Szatmári, B.; Barabássy, Á.; Harsányi, J.; Laszlovszky, I.; Sebe, B.; Gál, M.; Shiragami, K.; Németh, G. Cariprazine Safety in Adolescents and the Elderly: Analyses of Clinical Study Data. Front. Psychiatry 2020, 11, 61. [Google Scholar] [CrossRef]
- Appiah-Kubi, P.; Olotu, F.A.; Soliman, M.E.S. Exploring the structural basis and atomistic binding mechanistic of the selective antagonist blockade at D3 dopamine receptor over D2 dopamine receptor. J. Mol. Recognit. 2021, 34, e2885. [Google Scholar] [CrossRef]
- Mattila, M.L.; Hurtig, T.; Haapsamo, H.; Jussila, K.; Kuusikko-Gauffin, S.; Kielinen, M.; Linna, S.-L.; Ebeling, H.; Bloigu, R.; Joskitt, L.; et al. Comorbid psychiatric disorders associated with asperger syndrome/high-functioning autism: A community- and clinic-based study. J. Autism Dev. Disord. 2010, 40, 1080–1093. [Google Scholar] [CrossRef]
- Stigler, K.A.; Diener, J.T.; Kohn, A.E.; Li, L.; Erickson, C.A.; Posey, D.J.; McDougle, C.J. Aripiprazole in pervasive developmental disorder not otherwise specified and asperger’s disorder: A 14-week, prospective, open-label study. J. Child Adolesc. Psychopharmacol. 2009, 19, 265–274. [Google Scholar] [CrossRef]
- Riendeau, R.P.; Sullivan, J.L.; Meterko, M.; Stolzmann, K.; Williamson, A.K.; Miller, C.J.; Kim, B.; Bauer, M.S. Factor structure of the Q-LES-Q short form in an enrolled mental health clinic population. Qual. Life Res. Int. J. Qual. Life Asp. Treat. Care Rehabil. 2018, 27, 2953–2964. [Google Scholar] [CrossRef] [PubMed]
- Kapitány-Fövény, M.; Urbán, R.; Varga, G.; Potenza, M.N.; Griffiths, M.D.; Szekely, A.; Paksi, B.; Kun, B.; Farkas, J.; Kokonyei, G.; et al. The 21-item Barratt Impulsiveness Scale Revised (BIS-R-21): An alternative three-factor model. J. Behav. Addict. 2020, 9, 225–246. [Google Scholar] [CrossRef]
- Roncone, R.; Ventura, J.; Impallomeni, M.; Falloon, I.R.; Morosini, P.L.; Chiaravalle, E.; Casacchia, M. Reliability of an Italian standardized and expanded Brief Psychiatric Rating Scale (BPRS 4.0) in raters with high vs. low clinical experience. Acta Psychiatr. Scand. 1999, 100, 229–236. [Google Scholar] [CrossRef] [PubMed]
- Ritvo, R.A.; Ritvo, E.R.; Guthrie, D.; Ritvo, M.J.; Hufnagel, D.H.; McMahon, W.; Tonge, B.; Mataix-Cols, D.; Jassi, A.; Attwood, T.; et al. The Ritvo Autism Asperger Diagnostic Scale-Revised (RAADS-R): A scale to assist the diagnosis of Autism Spectrum Disorder in adults: An international validation study. J. Autism Dev. Disord. 2011, 41, 1076–1089. [Google Scholar] [CrossRef]
- Fagiolini, A.; Bolognesi, S.; Goracci, A.; Beccarini Crescenzi, B.; Cuomo, A. Principi di farmacodinamica e farmacocinetica nello switch tra antipsicotici: Focus su cariprazina. Riv. Psichiatr. 2019, 54, 1–6. [Google Scholar] [PubMed]
- de Bartolomeis, A.; Tomasetti, C.; Iasevoli, F. Update on the Mechanism of Action of Aripiprazole: Translational Insights into Antipsychotic Strategies Beyond Dopamine Receptor Antagonism. CNS Drugs 2015, 29, 773–799. [Google Scholar] [CrossRef] [PubMed]
- Blum, K.; Liu, Y.; Wang, W.; Wang, Y.; Zhang, Y.; Oscar-Berman, M.; Smolen, A.; Febo, M.; Han, D.; Simpatico, T.; et al. rsfMRI effects of KB220ZTM on neural pathways in reward circuitry of abstinent genotyped heroin addicts. Postgrad. Med. 2015, 127, 232–241. [Google Scholar] [CrossRef]
- Miuli, A.; Pettorruso, M.; Romanelli, E.; Stigliano, G.; Di Giuda, D.; De-Giorgio, F.; Martinotti, G.; di Giannantonio, M. Does DRD2 Taq1A Mediate Aripiprazole-Induced Gambling Disorder? A Pharmacogenetic Hypothesis. Front. Psychiatry 2020, 11, 275. [Google Scholar] [CrossRef]
- Kiss, B.; Némethy, Z.; Fazekas, K.; Kurkó, D.; Gyertyán, I.; Sághy, K.; Laszlovszky, I.; Farkas, B.; Kirschner, N.; Bolf-Terjéki, E.; et al. Preclinical pharmacodynamic and pharmacokinetic characterization of the major metabolites of cariprazine. Drug Des. Dev. Ther. 2019, 13, 3229–3248. [Google Scholar] [CrossRef]
- Giotakos, O. Is impulsivity in part a lithium deficiency state? Psychiatriki 2018, 29, 264–270. [Google Scholar] [CrossRef]
- Calabrese, F.; Tarazi, F.I.; Racagni, G.; Riva, M.A. The role of dopamine D(3) receptors in the mechanism of action of cariprazine. CNS Spectr. 2020, 25, 343–351. [Google Scholar] [CrossRef] [PubMed]
- Duric, V.; Banasr, M.; Franklin, T.; Lepack, A.; Adham, N.; Kiss, B.; Gyertyán, I.; Duman, R.S. Cariprazine Exhibits Anxiolytic and Dopamine D3 Receptor-Dependent Antidepressant Effects in the Chronic Stress Model. Int. J. Neuropsychopharmacol. 2017, 20, 788–796. [Google Scholar] [CrossRef] [PubMed]
- Lacroix, L.P.; Ceolin, L.; Zocchi, A.; Varnier, G.; Garzotti, M.; Curcuruto, O.; Heidbreder, C.A. Selective dopamine D3 receptor antagonists enhance cortical acetylcholine levels measured with high-performance liquid chromatography/tandem mass spectrometry without anti-cholinesterases. J. Neurosci. Methods 2006, 157, 25–31. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.; Panos, J.J.; Kwon, S.; Oyamada, Y.; Rajagopal, L.; Meltzer, H.Y. Comparative effect of lurasidone and blonanserin on cortical glutamate, dopamine, and acetylcholine efflux: Role of relative serotonin (5-HT)2A and DA D2 antagonism and 5-HT1A partial agonism. J. Neurochem. 2014, 128, 938–949. [Google Scholar] [CrossRef] [PubMed]
- Daly, S.A.; Waddington, J.L. Behavioural effects of the putative D-3 dopamine receptor agonist 7-OH-DPAT in relation to other «D-2-like» agonists. Neuropharmacology 1993, 32, 509–510. [Google Scholar] [CrossRef] [PubMed]
- Waters, N.; Löfberg, L.; Haadsma-Svensson, S.; Svensson, K.; Sonesson, C.; Carlsson, A. Differential effects of dopamine D2 and D3 receptor antagonists in regard to dopamine release, in vivo receptor displacement and behaviour. J. Neural. Transm. Gen. Sect. 1994, 98, 39–55. [Google Scholar] [CrossRef]
- Eagle, D.M.; Noschang, C.; d’Angelo, L.S.C.; Noble, C.A.; Day, J.O.; Dongelmans, M.L.; Theobald, D.E.; Mar, A.C.; Urcelay, G.P.; Morein-Zamir, S.; et al. The dopamine D2/D3 receptor agonist quinpirole increases checking-like behaviour in an operant observing response task with uncertain reinforcement: A novel possible model of OCD. Behav. Brain Res. 2014, 264, 207–229. [Google Scholar] [CrossRef]
- Light, K.J.; Joyce, P.R.; Luty, S.E.; Mulder, R.T.; Frampton, C.M.A.; Joyce, L.R.M.; Miller, A.L.; Kennedy, M.A. Preliminary evidence for an association between a dopamine D3 receptor gene variant and obsessive-compulsive personality disorder in patients with major depression. Am. J. Med. Genet. Part B Neuropsychiatr. Genet. 2006, 141, 409–413. [Google Scholar] [CrossRef]
- Savitz, J.; Hodgkinson, C.A.; Martin-Soelch, C.; Shen, P.H.; Szczepanik, J.; Nugent, A.; Herscovitch, P.; Grace, A.A.; Goldman, D.; Drevets, W.C. The functional DRD3 Ser9Gly polymorphism (rs6280) is pleiotropic, affecting reward as well as movement. PLoS ONE 2013, 8, e54108. [Google Scholar] [CrossRef]
Psychometric Scales | T0 | T1 |
---|---|---|
Q-LES-Q-SF | 30 | 42 |
BIS11 | 76 | 62 |
BPRS 4.0 | 51 | 35 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miuli, A.; Marrangone, C.; Di Marco, O.; Pasino, A.; Stigliano, G.; Mosca, A.; Pettorruso, M.; Schifano, F.; Martinotti, G. Could Cariprazine Be a Possible Choice for High Functioning Autism? A Case Report. Future Pharmacol. 2023, 3, 908-915. https://doi.org/10.3390/futurepharmacol3040054
Miuli A, Marrangone C, Di Marco O, Pasino A, Stigliano G, Mosca A, Pettorruso M, Schifano F, Martinotti G. Could Cariprazine Be a Possible Choice for High Functioning Autism? A Case Report. Future Pharmacology. 2023; 3(4):908-915. https://doi.org/10.3390/futurepharmacol3040054
Chicago/Turabian StyleMiuli, Andrea, Carlotta Marrangone, Ornella Di Marco, Arianna Pasino, Gianfranco Stigliano, Alessio Mosca, Mauro Pettorruso, Fabrizio Schifano, and Giovanni Martinotti. 2023. "Could Cariprazine Be a Possible Choice for High Functioning Autism? A Case Report" Future Pharmacology 3, no. 4: 908-915. https://doi.org/10.3390/futurepharmacol3040054
APA StyleMiuli, A., Marrangone, C., Di Marco, O., Pasino, A., Stigliano, G., Mosca, A., Pettorruso, M., Schifano, F., & Martinotti, G. (2023). Could Cariprazine Be a Possible Choice for High Functioning Autism? A Case Report. Future Pharmacology, 3(4), 908-915. https://doi.org/10.3390/futurepharmacol3040054