Production of Hydrogel-Based Curcumin-Loaded O/W Suspoemulsions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Particle Size Analysis
2.2.2. Production of Curcumin Suspension
- Sonofragmentation
- Bead milling
2.2.3. Production of Suspoemulsions
2.3. Determination of the Encapsulation Efficiency
- Establishing a standard curve
- Determination of encapsulation efficiency
3. Results and Discussion
3.1. Production of the Suspension
- Process I: Production in Water
- Process II: Production in Miglyol
- Comparison of Both Processes
3.2. Production of Suspoemulsions
3.3. Determination of the Encapsulation Efficiency
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
n | A500 nm | Real Dilution Factor | ctotal (g/kgSE) | ccont. (Measured) (g/kgSE) | EE (%) |
---|---|---|---|---|---|
1 | 0.032 | 20.03 | 1.007 | 0.943 | −1775.67 |
2 | −0.109 | 19.99 | 1.002 | −2.938 | 393.17 |
3 | −0.046 | 19.94 | 0.999 | 27.554 | −2656.44 |
4 | −0.049 | 20.45 | 1.001 | −1.316 | 231.50 |
5 | 0.022 | 19.70 | 1.002 | 0.657 | 34.48 |
References
- Müller, R.; Keck, C. Twenty years of drug nanocrystals: Where are we, and where do we go? Eur. J. Pharm. Biopharm. 2012, 80, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Wahlang, B.; Pawar, Y.B.; Bansal, A.K. Identification of permeability-related hurdles in oral delivery of curcumin using the Caco-2 cell model. Eur. J. Pharm. Biopharm. 2010, 77, 275–282. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, T.; Gilani, A. Therapeutic Potential of Turmeric in Alzheimer’s Disease: Curcumin or Curcuminoids? Phytother. Res. 2014, 28, 517–525. [Google Scholar] [CrossRef] [PubMed]
- Plummer, S.M.; Holloway, K.A.; Manson, M.M.; Munks, R.J.; Kaptein, A.; Farrow, S.; Howells, L. Inhibition of cyclo-oxygenase 2 expression in colon cells by the chemopreventive agent curcumin involves inhibition of NF-κB activation via the NIK/IKK signalling complex. Oncogene 1999, 18, 6013–6020. [Google Scholar] [CrossRef] [PubMed]
- Sahebkar, A.; Serban, M.-C.; Ursoniu, S.; Banach, M. Effect of curcuminoids on oxidative stress: A systematic review and meta-analysis of randomized controlled trials. J. Funct. Foods 2015, 18, 898–909. [Google Scholar] [CrossRef]
- Shehzad, A.; Lee, J.; Lee, Y.S. Curcumin in various cancers. Biofactors 2013, 39, 56–68. [Google Scholar] [CrossRef]
- EMA/HMPC/749518/2016; Assessment Report on Curcuma longa L., Rhizoma. European Medicines Agency (EMA): Zuidas, Amsterdam, 25 September 2018.
- Shome, S.; Das Talukdar, A.; Choudhury, M.D.; Bhattacharya, M.K.; Upadhyaya, H. Curcumin as potential therapeutic natural product: A nanobiotechnological perspective. J. Pharm. Pharmacol. 2016, 68, 1481–1500. [Google Scholar] [CrossRef]
- Sadigh, M.K.; Zakerhamidi, M.; Shamkhali, A.; Babaei, E. Photo-physical behaviors of various active forms of curcumin in polar and low polar environments. J. Photochem. Photobiol. A: Chem. 2017, 348, 188–198. [Google Scholar] [CrossRef]
- Nayak, A.; Mills, T.; Norton, I. Lipid Based Nanosystems for Curcumin: Past, Present and Future. Curr. Pharm. Des. 2016, 22, 4247–4256. [Google Scholar] [CrossRef]
- Anand, P.; Nair, H.B.; Sung, B.; Kunnumakkara, A.B.; Yadav, V.R.; Tekmal, R.R.; Aggarwal, B.B. RETRACTED: Design of curcumin-loaded PLGA nanoparticles formulation with enhanced cellular uptake, and increased bioactivity in vitro and superior bioavailability in vivo. Biochem. Pharmacol. 2010, 79, 330–338. [Google Scholar] [CrossRef]
- Araiza-Calahorra, A.; Akhtar, M.; Sarkar, A. Recent advances in emulsion-based delivery approaches for curcumin: From encapsulation to bioaccessibility. Trends Food Sci. Technol. 2018, 71, 155–169. [Google Scholar] [CrossRef]
- Im, K.; Ravi, A.; Kumar, D.; Kuttan, R.; Maliakel, B. An enhanced bioavailable formulation of curcumin using fenugreek-derived soluble dietary fibre. J. Funct. Foods 2012, 4, 348–357. [Google Scholar] [CrossRef]
- Eckert, R.W.; Wiemann, S.; Keck, C.M. Improved Dermal and Transdermal Delivery of Curcumin with SmartFilms and Nanocrystals. Molecules 2021, 26, 1633. [Google Scholar] [CrossRef] [PubMed]
- Pelikh, O.; Keck, C.M. Hair Follicle Targeting and Dermal Drug Delivery with Curcumin Drug Nanocrystals—Essential Influence of Excipients. Nanomaterials 2020, 10, 2323. [Google Scholar] [CrossRef] [PubMed]
- Vidlářová, L.; Romero, G.B.; Hanuš, J.; Štěpánek, F.; Müller, R.H. Nanocrystals for dermal penetration enhancement–Effect of concentration and underlying mechanisms using curcumin as model. Eur. J. Pharm. Biopharm. 2016, 104, 216–225. [Google Scholar] [CrossRef]
- Bratz, M.; Parg, A.; Fricke, M. Suspoemulsions: Key Technology for Tailor-Made Ready-Mix Formulations. In Chemistry of Crop protection: Progress and Prospects in Science and Regulation; Voss, G., Ramos, G., Eds.; Documents Thirty Invited Lectures Held at the 10th IUPAC International Congress on the Chemistry of Crop Protection in August 2002; Wiley: Hoboken, NJ, USA, 2003; pp. 262–271. [Google Scholar] [CrossRef]
- A Faers, M.; Pontzen, R. Factors influencing the association between active ingredient and adjuvant in the leaf deposit of adjuvant-containing suspoemulsion formulations. Pest Manag. Sci. 2008, 64, 820–833. [Google Scholar] [CrossRef]
- Tadros, T.F. Formulation Science and Technology. 6. Formulation of Suspoemulsions. In Volume 4: Agrochemicals, Paints and Coatings and Food Colloids; De Gruyter: Berlin, Germany; Boston, MA, USA, 2018. [Google Scholar] [CrossRef]
- Schmidt, P.C.; Perschbacher, H.; Steffens, K.J.; Kraemer, H.P. Developement of a Suspension-Emulsion System for Parental Application in Animals. Acta Pharm. Technol. 1989, 35, 34–37. [Google Scholar]
- Turino, L.N.; Mariano, R.N.; Mengatto, L.N.; Luna, J.A. In vitro evaluation of suspoemulsions for in situ-forming polymeric microspheres and controlled release of progesterone. J. Microencapsul. 2015, 32, 538–546. [Google Scholar] [CrossRef]
- Intarakumhaeng, R.; Shi, Z.; Wanasathop, A.; Stella, Q.; Wei, K.S.; Styczynski, P.B.; Li, C.; Smith, E.D.; Li, S. In vitro skin penetration of petrolatum and soybean oil and effects of glyceryl monooleate. Int. J. Cosmet. Sci. 2018, 40, 367–376. [Google Scholar] [CrossRef]
- Patzelt, A.; Lademann, J.; Richter, H.; Darvin, M.E.; Schanzer, S.; Thiede, G.; Sterry, W.; Vergou, T.; Hauser, M. In vivo investigations on the penetration of various oils and their influence on the skin barrier. Ski. Res. Technol. 2012, 18, 364–369. [Google Scholar] [CrossRef]
- Lopes, L.; Murphy, N.; Nornoo, A. Enhancement of transdermal delivery of progesterone using medium-chain mono and diglycerides as skin penetration enhancers. Pharm. Dev. Technol. 2009, 14, 524–529. [Google Scholar] [CrossRef]
- Schilde, C.; Mages-Sauter, C.; Kwade, A.; Schuchmann, H. Efficiency of different dispersing devices for dispersing nanosized silica and alumina. Powder Technol. 2011, 207, 353–361. [Google Scholar] [CrossRef]
- Xu, W.; Huang, L.; Jin, W.; Ge, P.; Shah, B.R.; Zhu, D.; Jing, J. Encapsulation and release behavior of curcumin based on nanoemulsions-filled alginate hydrogel beads. Int. J. Biol. Macromol. 2019, 134, 210–215. [Google Scholar] [CrossRef] [PubMed]
- Shin, G.H.; Li, J.; Cho, J.H.; Kim, J.T.; Park, H.J. Enhancement of Curcumin Solubility by Phase Change from Crystalline to Amorphous in Cur-TPGS Nanosuspension. J. Food Sci. 2016, 81, N494–N501. [Google Scholar] [CrossRef] [PubMed]
- Peltonen, L.; Hirvonen, J.T. Pharmaceutical nanocrystals by nanomilling: Critical process parameters, particle fracturing and stabilization methods. J. Pharm. Pharmacol. 2010, 62, 1569–1579. [Google Scholar] [CrossRef] [PubMed]
- Taylor, P. Ostwald ripening in emulsions: Estimation of solution thermodynamics of the disperse phase. Adv. Colloid Interface Sci. 2003, 106, 261–285. [Google Scholar] [CrossRef] [PubMed]
- Jala, R.C.R.; Chen, B.; Li, H.; Zhang, Y.; Cheong, L.-Z.; Yang, T.; Xu, X. Enzymatic preparation and characterization of soybean lecithin-based emulsifiers. Grasas Aceites 2016, 67, 168. [Google Scholar] [CrossRef]
- Mäntele, W.; Deniz, E. UV–VIS absorption spectroscopy: Lambert-Beer reloaded. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2017, 173, 965–968. [Google Scholar] [CrossRef]
- Münstedt, H. Rheological Measurements and Structural Analysis of Polymeric Materials. Polymers 2021, 13, 1123. [Google Scholar] [CrossRef]
Phase | Percentage (% (w/w)) | Material | Percentage of Phase (% (w/w)) |
---|---|---|---|
Continuous | Deionized water | 87.5 | |
(hydrophile) | 90/98 | Glycerol 85% | 10 |
HEC (10,000 mPs) | 2.5 | ||
Disperse | Miglyol 812 | 90 | |
(lipophile/suspension) | 10/2 | Curcumin | 5 |
Lysolecithin | 5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bodmer, T.; Hartmann, S.F.; Keck, C.M.; Kleiner, M.; Köhler, K. Production of Hydrogel-Based Curcumin-Loaded O/W Suspoemulsions. Future Pharmacol. 2023, 3, 451-463. https://doi.org/10.3390/futurepharmacol3020028
Bodmer T, Hartmann SF, Keck CM, Kleiner M, Köhler K. Production of Hydrogel-Based Curcumin-Loaded O/W Suspoemulsions. Future Pharmacology. 2023; 3(2):451-463. https://doi.org/10.3390/futurepharmacol3020028
Chicago/Turabian StyleBodmer, Timo, Steffen F. Hartmann, Cornelia M. Keck, Martina Kleiner, and Karsten Köhler. 2023. "Production of Hydrogel-Based Curcumin-Loaded O/W Suspoemulsions" Future Pharmacology 3, no. 2: 451-463. https://doi.org/10.3390/futurepharmacol3020028
APA StyleBodmer, T., Hartmann, S. F., Keck, C. M., Kleiner, M., & Köhler, K. (2023). Production of Hydrogel-Based Curcumin-Loaded O/W Suspoemulsions. Future Pharmacology, 3(2), 451-463. https://doi.org/10.3390/futurepharmacol3020028