The Roles of Vitamin D and Polyphenols in the Management of Age-Related Macular Degeneration: A Narrative Review
Abstract
:1. Introduction
2. AMD and Vit D
2.1. Clinical Diagnoses
2.2. Effects of Vitamin D Levels and Retinal Choroidal Function and Structure
2.3. Vitamin D and Polyphenols Supplementation and Retinal Choroidal Function and Structure
Compounds | Study Design, Country | Doses or Natural Source/Follow-Up | Age in Years (Mean ± SD) | Summary of Findings | AMD Type | Author(s), Year |
---|---|---|---|---|---|---|
Vit D3 (cholecalciferol) | Prospective Switzerland | 300.000 IU/month Follow-up: 3 months | 28.4 ± 6.74—group I (Vit D deficiency) 30.2 ± 6.25—group II (Normal Vit D levels) | CT values measured in OCT increased significantly after vit D supplementation. | Absence of AMD | Öncül et al., 2020 [9] |
Macumax® (bilberry, saffron extract) | RCT India | Bilberry extract: 40 mg/day Follow-up: 3 months | 58.97 ± 7.5 | Significant improvement in functional vision in early stages of dry AMD with no structural AMD progression. Significant decrease of vision distortion and increased distance vision and dark adaptation. No structural changes were observed in OCT. | Dry Early-stage | Majeed et al., 2021 [23] |
Dietary Flavonoids Intake | Cohort Study Australia | Intake of total flavonoids (median) 287.59 mg/day: Follow-up: 12 months | 78.7 ± 9.1 | Higher intake of flavanols (quercetin) and flavan-3-ols (epigallocatechin-3-gallate and epigallocatechin) contributed to better treatment outcomes with anti-VEGF therapy in neovascular AMD. Significantly better BCVA associated with lower IRF in OCT (flavanols and flavan-3-ols). | Neovascular (anti-VEGF therapy) | Detaram et al., 2021 [25] |
3. Discussion
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, J.Q.; Welchowski, T.; Schmid, M.; Mauschitz, M.M.; Holz, F.G.; Finger, R.P. Prevalence and incidence of age-related macular degeneration in Europe: A systematic review and meta-analysis. Br. J. Ophthalmol. 2020, 104, 1077–1084. [Google Scholar] [CrossRef] [PubMed]
- Wong, W.L.; Su, X.; Li, X.; Cheung, C.M.; Klein, R.; Cheng, C.Y.; Wong, T.Y. Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: A systematic review and meta-analysis. Lancet Glob. Health 2014, 2, e106–e116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, M.; Duan, P.C.; Liang, J.H.; Zhang, X.F.; Pan, C.W. Geographic distributions of age-related macular degeneration incidence: A systematic review and meta-analysis. Br. J. Ophthalmol. 2021, 105, 1427–1434. [Google Scholar] [CrossRef] [PubMed]
- Martinez, A.; Pizzimenti, J.J.; Lem, D.W.; Davey, P.G. Health Promotion for AMD and the Role of Nutrition. In Recent Advances and New Perspectives in Managing Macular Degeneration; IntechOpen: London, UK, 2022. [Google Scholar] [CrossRef]
- Parodi, M.B.; Brunoro, A.; Tomasso, L.; Scuderi, G. Benefits of micronutrient supplementation for reducing the risk of wet age-related macular disease and diabetic retinopathy: An update. Eur. J. Ophthalmol. 2020, 30, 780–794. [Google Scholar] [CrossRef]
- Hodžić, N.; Kenjerić, D.; Hodžić, Z.; Nadarević-Vodenčarević, A. Age-related Macular Degeneration (AMD), supplements and nutrition - What does the evidence tell us? Food Health Dis. Sci.-Prof. J. Nutr. Diet. 2021, 10, 14–23. [Google Scholar]
- Layana, A.G.; Minnella, A.M.; Garhöfer, G.; Aslam, T.; Holz, F.G.; Leys, A.; Silva, R.; Delcourt, C.; Souied, E.; Seddon, J.M. Vitamin D and Age-Related Macular Degeneration. Nutrients 2017, 9, 1120. [Google Scholar] [CrossRef] [Green Version]
- Kan, E.; Kan, E.K.; Yücel, Ö.E. The possible link between vitamin D levels and exudative age-related macular degeneration. Oman. Med. J. 2020, 35, e83. [Google Scholar] [CrossRef]
- Öncül, H.; Alakus, M.F.; Çağlayan, M.; Öncül, F.Y.; Dag, U.; Arac, E. Changes in choroidal thickness after vitamin D supplementation in patients with vitamin D deficiency. Can. J. Ophthalmol. 2020, 55, 486–491. [Google Scholar] [CrossRef]
- Kabataş, N.; Doğan, A.Ş.; Yılmaz, M.; Kabataş, E.U.; Biçer, T.; Çalışkan, S.; Çelikay, O.; Uçar, F.; Gürdal, C. Association Between Age-Related Macular Degeneration And 25(Oh) Vitamin D Levels In The Turkish Population. Arq. Bras. Oftalmol. 2022, 85, 7–12. [Google Scholar] [CrossRef]
- Gopinath, B.; Liew, G.; Kifley, A.; Flood, V.M.; Joachim, N.; Lewis, J.R.; Hodgson, J.M.; Mitchell, P. Dietary flavonoids and the prevalence and 15-y incidence of age-related macular degeneration. Am. J. Clin. Nutr. 2018, 108, 381–387. [Google Scholar] [CrossRef] [Green Version]
- Pawlowska, E.; Szczepanska, J.; Koskela, A.; Kaarniranta, K.; Blasiak, J. Dietary polyphenols in age-related macular degeneration: Protection against oxidative stress and beyond. Oxidative Med. Cell. Longev. 2019, 2019, 9682318. [Google Scholar] [CrossRef] [PubMed]
- Parravano, M.; Tedeschi, M.; Manca, D.; Costanzo, E.; Di Renzo, A.; Giorno, P.; Barbano, L.; Ziccardi, L.; Varano, M.; Parisi, V. Effects of Macuprev® Supplementation in Age-Related Macular Degeneration: A Double-Blind Randomized Morpho-Functional Study Along 6 Months of Follow-Up. Adv. Ther. 2019, 36, 2493–2505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elsharkawy, M.; Elrazzaz, M.; Ghazal, M.; Alhalabi, M.; Soliman, A.; Mahmoud, A.; El-Daydamony, E.; Atwan, A.; Thanos, A.; Sandhu, H.S.; et al. Role of optical coherence tomography imaging in predicting progression of age-related macular disease: A survey. Diagnostics 2021, 11, 2313. [Google Scholar] [CrossRef] [PubMed]
- Al-Zamil, W.M.; Yassin, S.A. Recent Developments in Age-Related Macular Degeneration: A Review. Clin. Interv. Aging 2017, 22, 1313–1330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grant, W.B.; Al Anouti, F.; Boucher, B.J.; Dursun, E.; Gezen-Ak, D.; Jude, E.B.; Karonova, T.; Pludowski, P. A Narrative Review of the Evidence for Variations in Serum 25-Hydroxyvitamin D Concentration Thresholds for Optimal Health. Nutrients 2022, 14, 639. [Google Scholar] [CrossRef] [PubMed]
- Pilz, S.; März, W.; Cashman, K.D.; Kiely, M.E.; Whiting, S.J.; Holick, M.F.; Grant, W.B.; Pludowski, P.; Hiligsmann, M.; Trummer, C.; et al. Rationale and plan for vitamin D food fortification: A review and guidance paper. Front. Endocrinol. 2018, 9, 373. [Google Scholar] [CrossRef]
- Charoenngam, N.; Kalajian, T.A.; Shirvani, A.; Yoon, G.H.; Desai, S.; McCarthy, A.; Apovian, C.M.; Holick, M.F. A pilot-randomized, double-blind crossover trial to evaluate the pharmacokinetics of orally administered 25-hydroxyvitamin D3 and vitamin D3in healthy adults with differing BMI and in adults with intestinal malabsorption. Am. J. Clin. Nutr. 2021, 114, 1189–1199. [Google Scholar] [CrossRef]
- Caban, M.; Lewandowska, U. Vitamin D, the Vitamin D Receptor, Calcitriol Analogues and Their Link with Ocular Diseases. Nutrients 2022, 14, 2353. [Google Scholar] [CrossRef]
- Icel, E.; Ucak, T.; Ugurlu, A.; Erdol, H. Changes in optical coherence tomography angiography in patients with vitamin D deficiency. Eur. J. Ophthalmol. 2022, 32, 3514–3521. [Google Scholar] [CrossRef]
- Serena, A.P.; Betancourt, D.P.M.; del Valle, F.G.; Ruiz-Moreno, J.M. Serum 25-hydroxy vitamin D levels in age-related macular degeneration. Int. J. Retin. Vitr. 2022, 8, 17. [Google Scholar] [CrossRef]
- Tsao, R. Chemistry and biochemistry of dietary polyphenols. Nutrients 2010, 2, 1231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Majeed, M.; Majeed, S.; Nagabhushanam, K. An Open-Label Pilot Study on Macumax Supplementation for Dry-Type Age-Related Macular Degeneration. J. Med. Food 2021, 24, 551–557. [Google Scholar] [CrossRef] [PubMed]
- Bayazid, A.B.; Chun, E.M.; al Mijan, M.; Park, S.H.; Moon, S.K.; Lim, B.O. Anthocyanins profiling of bilberry (Vaccinium myrtillus L.) extract that elucidates antioxidant and anti-inflammatory effects. Food Agric. Immunol. 2021, 32, 713–726. [Google Scholar] [CrossRef]
- Detaram, H.D.; Liew, G.; Lewis, J.R.; Bondonno, N.P.; Bondonno, C.P.; Van Vu, K.; Burlutsky, G.; Hodgson, J.M.; Mitchell, P.; Gopinath, B. Dietary flavonoids are associated with longitudinal treatment outcomes in neovascular age-related macular degeneration. Eur. J. Nutr. 2021, 60, 4243–4250. [Google Scholar] [CrossRef] [PubMed]
- Mehta, R. Effect of Oral Curcumin Supplementation in Dry Age-Related Macular Degeneration (AMD) Patients. 2021. Available online: https://ichgcp.net/clinical-trials-registry/NCT04590196 (accessed on 8 February 2023).
- Knepper, P.A. A Study to Evaluate the Safety and Efficacy of RQC for AMD. Available online: https://www.centerwatch.com/clinical-trials/listings/283977/a-study-to-evaluate-the-safety-and-efficacy-of-rqc-for-amd/ (accessed on 8 February 2023).
- Abu-Amero, K.K.; Kondkar, A.A.; Chalam, K. Resveratrol and ophthalmic diseases. Nutrients 2016, 8, 200. [Google Scholar] [CrossRef] [Green Version]
- Delmas, D.; Cornebise, C.; Courtaut, F.; Xiao, J.; Aires, V. New highlights of resveratrol: A review of properties against ocular diseases. Int. J. Mol. Sci. 2021, 22, 1295. [Google Scholar] [CrossRef]
- García-Layana, A.; Recalde, S.; Hernandez, M.; Abraldes, M.J.; Nascimento, J.; Hernández-Galilea, E.; Olmedilla-Alonso, B.; Escobar-Barranco, J.J.; Zapata, M.A.; Silva, R.; et al. A randomized study of nutritional supplementation in patients with unilateral wet age-related macular degeneration. Nutrients 2021, 13, 1253. [Google Scholar] [CrossRef]
- Ferreira, A.; Silva, N.; Furtado, M.J.; Carneiro, Â.; Lume, M.; Andrade, J.P. Serum vitamin D and age-related macular degeneration: Systematic review and meta-analysis. Surv. Ophthalmol. 2021, 66, 183–197. [Google Scholar] [CrossRef]
- Merle, B.M.J.; Silver, R.E.; Rosner, B.; Seddon, J.M. Associations between vitamin D intake and progression to incident advanced age-related macular degeneration. Investig. Ophthalmol. Vis. Sci. 2017, 58, 4579–4585. [Google Scholar] [CrossRef] [Green Version]
- Christen, W.G.; Cook, N.R.; Manson, J.E.; Buring, J.E.; Chasman, D.I.; Lee, I.M.; Bubes, V.; Li, C.; Haubourg, M.; Schaumberg, D.A. Effect of Vitamin D and ω-3 Fatty Acid Supplementation on Risk of Age-Related Macular Degeneration: An Ancillary Study of the VITAL Randomized Clinical Trial. JAMA Ophthalmol. 2020, 138, 1280–1289. [Google Scholar] [CrossRef]
- Csader, S.; Korhonen, S.; Kaarniranta, K.; Schwab, U. The Effect of Dietary Supplementations on Delaying the Progression of Age-Related Macular Degeneration: A Systematic Review and Meta-Analysis. Nutrients 2022, 14, 4273. [Google Scholar] [CrossRef] [PubMed]
- Parisi, V.; Ziccardi, L.; Costanzo, E.; Tedeschi, M.; Barbano, L.; Manca, D.; Di Renzo, A.; Giorno, P.; Varano, M.; Parravano, M. Macular functional and morphological changes in intermediate age-related maculopathy. Investig. Ophthalmol. Vis. Sci. 2020, 61, 11. [Google Scholar] [CrossRef]
- Wong, K.-H.; Nam, H.-Y.; Lew, S.-Y.; Naidu, M.; David, P.; Kamalden, T.A.; Hadie, S.N.H.; Lim, L.-W. Discovering the Potential of Natural Antioxidants in Age-Related Macular Degeneration: A Review. Pharmaceuticals 2022, 15, 101. [Google Scholar] [CrossRef]
- Sun, M.; Yu, T.; Zhao, J.; Zhu, X.; Xin, W.; Zhang, F.; Zhang, L. Role of flavonoids in age-related macular degeneration. Biomed. Pharmacother. 2023, 159, 114259. [Google Scholar] [CrossRef] [PubMed]
- Ikonne, E.U.; Ikpeazu, V.O.; Ugbogu, E.A. The potential health benefits of dietary natural plant products in age related eye diseases. Heliyon 2020, 6, e04408. [Google Scholar] [CrossRef] [PubMed]
- Allegrini, D.; Raimondi, R.; Angi, M.; Ricciardelli, G.; Montericcio, A.; Borgia, A.; Romano, M.R. Curcuma-Based Nutritional Supplement in Patients with Neovascular Age-Related Macular Degeneration. J. Med. Food 2021, 24, 1191–1196. [Google Scholar] [CrossRef] [PubMed]
- Bungau, S.; Abdel-Daim, M.M.; Tit, D.M.; Ghanem, E.; Sato, S.; Maruyama-Inoue, M.; Yamane, S.; Kadonosono, K. Health Benefits of Polyphenols and Carotenoids in Age-Related Eye Diseases. Oxid. Med. Cell Longev. 2019, 2019, 9783429. [Google Scholar] [CrossRef]
- Cory, H.; Passarelli, S.; Szeto, J.; Tamez, M.; Mattei, J. The Role of Polyphenols in Human Health and Food Systems: A Mini-Review. Front. Nutr. 2018, 5, 87. [Google Scholar] [CrossRef] [Green Version]
- Zysset-Burri, D.C.; Morandi, S.; Herzog, E.L.; Berger, L.E.; Zinkernagel, M.S. The role of the gut microbiome in eye diseases. Prog. Retin. Eye Res. 2023, 92, 101117. [Google Scholar] [CrossRef]
- Singh, R.K.; Chang, H.W.; Yan, D.; Lee, K.M.; Ucmak, D.; Wong, K.; Abrouk, M.; Farahnik, B.; Nakamura, M.; Zhu, T.H.; et al. Influence of diet on the gut microbiome and implications for human health. J. Transl. Med. 2017, 15, 73. [Google Scholar] [CrossRef] [Green Version]
- Xu, Z.; Sun, T.; Li, W.; Sun, X. Inhibiting effects of dietary polyphenols on chronic eye diseases. J. Funct. Foods 2017, 39, 186–197. [Google Scholar] [CrossRef]
- Pameijer, E.M.; Heus, P.; Damen, J.A.; Spijker, R.; Hooft, L.; Ringens, P.J.; Imhof, S.M.; van Leeuwen, R. What did we learn in 35 years of research on nutrition and supplements for age-related macular degeneration: A systematic review. Acta Ophthalmol. 2022, 100, e1541–e1552. [Google Scholar] [CrossRef] [PubMed]
Study Design, Country | Vitamin D (Mean Serum 25(OH)D Levels ng/mL) | N (Group I e II) | Age (Mean ± SD) | Association between Vit D and Retinal-Choroidal Structure/AMD | Author(s) Study, Year |
---|---|---|---|---|---|
Case-Control | Group I: deficiency = 7.61 | 82 | 37.29 ± 12.76 | Deficient Vit D levels affected macular perfusion with lower retinal vascular density values. Central macular volume and RNFL were not significantly different. | Icel, et al., 2022 [20] |
Group II: control = 25.29 | 50 | 39.1 ± 11.59 | |||
Case-Control | AMD group = 14.4 ± 9.6; (wet-type AMD = 11.4 ± 5.1 dry-type AMD = 15.3 ± 10.9) | 114 (64/50) | 71.5 ± 7.9 | Significant correlation between vit D deficiency and AMD progression. | Kabataş et al., 2022 [10] |
Control group = 29.4 ± 14.6 | 102 (57/45) | 69.4 ± 10.1 | |||
Cross-sectional | AMD group = 15 ± 10 | 93 (57/36) | 78.96 ± 8.5 | Deficient Vit D levels (<30 ng/mL) were found in 89.2% of the AMD group and 50.5% had higher prevalence of Vit D deficiency comparatively with controls 31.2%. | Serena, et al., 2022 [21] |
early AMD = 12.5 ± 7.3 | (10) | ||||
intermediate AMD = 15 ± 11 | (12) | ||||
advanced aAMD = 15 ± 8 | (19) | ||||
advanced nAMD = 17 ± 11.5 | (52) | ||||
Control group = 21 ± 14 | 93 (54/39) | 78.8 ± 8.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernandes, N.; Araújo, M.C.; Lança, C. The Roles of Vitamin D and Polyphenols in the Management of Age-Related Macular Degeneration: A Narrative Review. Future Pharmacol. 2023, 3, 317-328. https://doi.org/10.3390/futurepharmacol3010020
Fernandes N, Araújo MC, Lança C. The Roles of Vitamin D and Polyphenols in the Management of Age-Related Macular Degeneration: A Narrative Review. Future Pharmacology. 2023; 3(1):317-328. https://doi.org/10.3390/futurepharmacol3010020
Chicago/Turabian StyleFernandes, Nádia, Marta Castro Araújo, and Carla Lança. 2023. "The Roles of Vitamin D and Polyphenols in the Management of Age-Related Macular Degeneration: A Narrative Review" Future Pharmacology 3, no. 1: 317-328. https://doi.org/10.3390/futurepharmacol3010020