Polyols Permeability on Caco-2 Cells and Their Effects on Transport of Low-Permeability Drugs
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cytotoxicity Determination
2.2. Analytical Methods
2.3. Permeability Assay on Caco-2 Cells
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Adkin, D.A.; Davis, S.S.; Sparrow, R.A.; Huckle, P.D.; Philips, A.J.; Wilding, I.R. The effects of pharmaceutical excipients on small intestinal transit. Br. J. Clin. Pharmacol. 1995, 39, 381–387. [Google Scholar] [CrossRef] [PubMed]
- Ashiru, D.A.; Patel, R.; Basit, A.W. Polyethylene glycol 400 enhances the bioavailability of a BCS Class III drug (ranitidine) in male subjects but not females. Pharm. Res. 2008, 25, 2327–2333. [Google Scholar] [CrossRef] [PubMed]
- Basedow, A.; Gernot, M.; Schmidt, P.C. Sorbitol Instant an Excipient with Unique Tableting Properties. Drug Dev. Ind. Pharm. 2008, 12, 11–13. [Google Scholar] [CrossRef]
- Bolhuis, K.G.; Rexwinkel G., E.; Zuurman, K. Polyols as filler-binders for disintegrating tablets prepared by direct compaction. Drug Dev. Ind. Pharm. 2009, 35, 671–677. [Google Scholar] [CrossRef] [PubMed]
- Tarlier, N.; Soulairol, I.; Sanchez-Ballester, N.; Gilles Baylac, G.; Aubert, A.; Lefevre, P.; Bataille, B.; Sharkawia, T. Deformation behavior of crystallized mannitol during compression using a rotary tablet press simulator. Int. J. Pharm. 2018, 547, 142–149. [Google Scholar] [CrossRef]
- Ohrem, H.L.; Schornick, E.; Kalivoda, A.R. Why is mannitol becoming more and more popular as a pharmaceutical excipient in solid dosage forms? Pharm. Dev. Technol. 2014, 19, 257–262. [Google Scholar] [CrossRef]
- Dash, R.P.; Srinivas, N.R.; Babu, R.J. Use of sorbitol as pharmaceutical excipient in the present day formulations-issues and challenges for drug absorption and bioavailability. Drug Dev. Ind. Pharm. 2019, 45, 1421–1429. [Google Scholar] [CrossRef] [PubMed]
- Amidon, G.L.; Lennernäs, H.; Shah, V.P.; Crison, J.R. A theoretical basis for a biopharmaceutics drug classification: The correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm Res. 1995, 12, 13–20. [Google Scholar]
- Aungst, B.J. Intestinal permeation enhancers. J. Pharm. Sci. 2000, 89, 429–442. [Google Scholar] [CrossRef]
- Adkin, A.D.; Davis, S.S.; Sparrow, R.A.; Huckle, P.D.; Phillips, A.J.; Wilding, I.R. The Effect of Mannitol on the Oral Bioavailability of Cimetidine. J. Pharm. Sci. 1995, 39, 381–387. [Google Scholar] [CrossRef]
- Chen, M.L.; Sadrieh, N.; Yu, L. Impact of Osmotically Active Excipients on Bioavailability and Bioequivalence of BCS Class III Drugs. AAPS J. 2013, 15, 1043–1050. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vaithianathan, S.; Haidar, S.H.; Zhang, X.; Jiang, W.; Avon, C.; Dowling, T.C.; Shao, C.; Kane, M.; Hoag, S.W.; Flasar, M.H.; et al. Effect of Common Excipients on the Oral Drug Absorption of Biopharmaceutics Classification System Class 3 Drugs Cimetidine and Acyclovir. J. Pharm. Sci. 2016, 105, 996–1005. [Google Scholar] [CrossRef] [PubMed]
- Rege, B.D.; Yu, L.X.; Hussain, A.S.; Polli, J.E. Effect of Common Excipients on Caco-2 Transport of Low-Permeability Drugs. J. Pharm. Sci. 2001, 90, 1770–1786. [Google Scholar] [CrossRef] [PubMed]
- Van Breemen, R.B.; Li, Y. Caco-2 cell permeability assays to measure drug absorption. Expert Opin. Drug Metab. Toxicol. 2005, 1, 175–185. [Google Scholar] [CrossRef] [PubMed]
- Cao, S.; Hang, M.; Yuan, M.; Yang, D.; Zhao, M.; Zhang, S.; Wang, P.; Zhang, R.; Gao, X. The pharmaceutical excipient PEG400 affect the absorption of baicalein in Caco-2 monolayer model by interacting with UDP-glucuronosyltransferases and efflux transport proteins. Pharmacol. Res. Perspect. 2022, 10, 928–942. [Google Scholar] [CrossRef]
- Xin, Z.; Li-Fang, W.; Jia-Qi, C.; Bo-Lin, Z.; Xiu-Hong, C.; Jun, L.I.; Peng-Fei, T.; Jin-Ling, W. Absorption mechanism of dragon’s blood phenolic extracts in Caco-2 cells. Zhongguo Zhong Yao Za Zhi. 2020, 45, 4889–4895. [Google Scholar]
- Zhen, Z.; Zhe, L.S.; Shuo, Z.; Jia, L.X.; Hui, L.; Qin, S.; Qing, Y.L. Transport of curcumin derivatives in Caco-2 cell monolayers. Eur. J. Pharm. Biopharm. 2017, 117, 123–131. [Google Scholar]
- Li, H.; Jin, H.E.; Kim, W.; Han, Y.H.; Kim, D.D.; Chung, S.J.; Shim, C.K. Involvement of P-glycoprotein, multidrug resistance protein 2 and breast cancer resistance protein in the transport of belotecan and topotecan in Caco-2 and MDCKII cells. Pharm Res. 2008, 25, 2601–2612. [Google Scholar] [CrossRef]
- Liu, Y.; Liang, X.; Zou, Y.; Peng, Y.; McClements, D.J.; Hu, K. Resveratrol-loaded biopolymer core-shell nanoparticles: Bioavailability and anti-inflammatory effects. Food Funct. 2020, 11, 4014–4025. [Google Scholar] [CrossRef]
- Calatayud, M.; Devesa, V.; Montoro, R.; Vélez, D. In vitro study of intestinal transport of arsenite, monomethylarsonous acid, and dimethylarsinous acid by Caco-2 cell line. Toxicol. Lett. 2011, 204, 127–133. [Google Scholar] [CrossRef]
- Ma, B.; Wang, J.; Sun, J.; Li, M.; Xu, H.; Sun, G.; Sun, X. Permeability of rhynchophylline across human intestinal cell in vitro. Int. J. Clin. Exp. Pathol. 2014, 7, 1957–1966. [Google Scholar] [PubMed]
- Lenhart, A.; Chey, W.D. A Systematic Review of the Effects of Polyols on Gastrointestinal Health and Irritable Bowel Syndrome. Adv. Nutr. 2017, 8, 587–596. [Google Scholar] [CrossRef] [PubMed]
- Saha, P.; Kou, J.H. Effect of solubilizing excipients on permeation of poorly water-soluble compounds across Caco-2 cell monolayers. Eur. J. Pharm. Biopharm. 2000, 50, 403–411. [Google Scholar] [CrossRef] [PubMed]
- Dale, O.; Nilsen, T.; Olaussen, G.; Tvedt, K.E.; Skorpen, F.; Smidsrød, O.; Vårum, K.M. Transepithelial transport of morphine and mannitol in Caco-2 cells: The influence of chitosans of different molecular weights and degrees of acetylation. J. Pharm. Pharmacol. 2006, 58, 909–915. [Google Scholar] [CrossRef] [PubMed]
- Lazorova, L.; Gråsjö, J.; Artursson, P.; Bergström, M.; Wu, F.; Petterman-Bergström, E.; Ogren, M.; Långström, B. Quantification and imaging of mannitol transport through Caco-2 cell monolayers using a positron-emitting tracer. Pharm. Res. 1998, 15, 1141–1144. [Google Scholar] [CrossRef] [PubMed]
- Müller, U.; Stübl, F.; Schwarzinger, B.; Sandner, G.; Iken, M.; Himmelsbach, M.; Schwarzinger, C.; Ollinger, N.; Stadlbauer, V.; Höglinger, O.; et al. In Vitro and In Vivo Inhibition of Intestinal Glucose Transport by Guava (Psidium Guajava) Extracts. Mol. Nutr. Food Res. 2018, 62, 1–11. [Google Scholar] [CrossRef]
- Rusznyák, A.; Palicskó, M.; Malanga, M.; Fenyvesi, E.; Szente, L.; Váradi, J.; Bácskay, I.; Vecsernyés, M.; Réti-Nagy, K.S.; Vasvári, G.; et al. Cellular Effects of Cyclodextrins: Studies on HeLa Cells. Molecules 2022, 27, 1589. [Google Scholar] [CrossRef]
- Artursson, P.; Borchardt, R.T. Intestinal drug absorption and metabolism in cell cultures: Caco-2 and beyond. Pharm. Res. 1997, 14, 1655–1658. [Google Scholar] [CrossRef]
- Cheméo—Chemical & Physical Properties by Cheméo Home page. Available online: http://www.chemeo.com (accessed on 1 February 2023).
- Parr, A.; Hidalgo, I.J.; Bode, C.; Brown, W.; Yazdanian, M.; Gonzalez, M.A.; Sagawa, K.; Miller, K.; Jiang, W.; Stippler, E.S. The Effect of Excipients on the Permeability of BCS Class III Compounds and Implications for Biowaivers. Pharm Res. 2016, 33, 167–176. [Google Scholar] [CrossRef]
- Artursson, P.; Lindmark, T.; Davis, S.S.; Illum, L. Effect of chitosan on the permeability of monolayers of intestinal epithelial-cells (Caco-2). Pharm. Res. 1994, 11, 1358–1361. [Google Scholar] [CrossRef]
- Anderberg, E.K.; Artursson, P. Cell Cultures to Access Drug Absorption Enhancement; De Boer, A.G., Ed.; Drug absorption enhancement; Hardwood Academic Publishers: Chur, Switzerland, 1994; pp. 113–114. [Google Scholar]
- Jakobsen, S.; Ge, L.G.; Pedersen, M.; Griffin, B.T.; Holm, R.; Nielsen, C. P-glycoprotein-mediated transport in a mucus-supplemented Caco-2 cell model in the presence of different surfactants. Int. J. Pharm. 2022, 624, 121885–121895. [Google Scholar] [CrossRef] [PubMed]
Total Time (min) | Flow Rate (μL/min) | Mobile Phase A (%) 1 | Mobile Phase B (%) 2 |
---|---|---|---|
0 | 650 | 100 | 0 |
0.3 | 650 | 100 | 0 |
0.9 | 650 | 20 | 80 |
1 | 650 | 0 | 100 |
1.3 | 650 | 0 | 100 |
1.31 | 650 | 100 | 0 |
1.6 | 650 | 100 | 0 |
Total Time (min) | Flow Rate (μL/min) | Mobile Phase A (%) 1 | Mobile Phase B (%) 2 |
---|---|---|---|
0 | 650 | 5 | 95 |
0.3 | 650 | 5 | 95 |
1.2 | 650 | 16 | 84 |
1.21 | 650 | 60 | 40 |
1.5 | 650 | 60 | 40 |
1.51 | 650 | 5 | 95 |
1.6 | 650 | 5 | 95 |
Compound | Buffer | Range of Linearity (nM) | r2 | Detection Mode 1 | Limit of Detection (nM) | RT (min) 2 |
---|---|---|---|---|---|---|
Furosemide | A | 0–1000 | 0.995 | QQQ | 0.5 | 0.99 |
B | 0.1–10000 | 0.997 | (-) | 5 | ||
Amiloride | A | 0.1–5000 | 0.989 | QQQ | 0.5 | 0.72 |
B | 0.5–5000 | 0.987 | (+) | 5 | ||
Atenolol | A | 0.1–10000 | 0.997 | QQQ | 5 | 0.71 |
B | 0.1–10000 | 0.997 | (+) | 5 | ||
Ranitidine | A | 0–1000 | 0.991 | QQQ | 0.5 | 0.72 |
B | 0–1000 | 0.991 | (+) | 0.5 | ||
Nadolol | A | 0–5000 | 0.997 | QQQ | 0.5 | 0.77 |
B | 0.1–10000 | 0.987 | (+) | 5 | ||
Acyclovir | A | 0.1–10000 | 0.993 | QQQ | 5 | 0.70 |
B | 0.1–5000 | 0.985 | (+) | 5 | ||
Mannitol | A | 0.1–10000 | 0.994 | QQQ | 100 | 0.80 |
B | 0.1–10000 | 0.996 | (-) | 100 | ||
Maltitol | A | 0.1–10000 | 0.992 | QQQ | 50 | 1.08 |
B | 0.5–10000 | 0.987 | (-) | 50 | ||
Sorbitol | A | 0.1–10000 | 0.998 | QQQ | 100 | 0.80 |
B | 0.1–10000 | 0.995 | (-) | 100 | ||
L-Thyroxine | A | 50–10000 | 0.999 | QQQ | 50 | 0.93 |
B | 50–5000 | 0.999 | (+) | 50 | ||
Xylitol | A | 0.1–10000 | 0.993 | QQQ | 100 | 0.74 |
B | 0.1–10000 | 0.993 | (-) | 500 |
Papp (×10−6 cms−1) | Mannitol | Maltitol | Sorbitol | Xylitol |
---|---|---|---|---|
Apical to Basolateral compartment | 2.70 (+/−0.88) | 1.09 (+/−0.01) | 1.88 (+/−0.33) | 5.88 (+/−0.20) |
Basolateral to Apical compartment | 8.75 (+/−3.38) | 0.52 (+/−0.02) | 8.76 (+/−2.91) | 3.52 (+/−0.23) |
Apical to Basolateral Compartment | No Excipient | Mannitol | Maltitol | Sorbitol | Xylitol |
---|---|---|---|---|---|
Papp (×10−6 cms−1) | |||||
Furosemide | 0.08 (+/−0.01) | 0.07 (+/−0.01) | 0.08 (+/−0.01) | 0.07 (+/−0.01) | 0.07 (+/−0.02) |
Amiloride | 0.15 (+/−0.03) | 0.23 (+/−0.03) | 0.22 (+/−0.01) | 0.21 (+/−0.03) | 0.24 (+/−0.04) |
Atenolol | 0.16 (+/−0.01) | 0.17 (+/−0.02) | 0.20 (+/−0.00) | 0.20 (+/−0.00) | 0.18 (+/−0.00) |
Ranitidine | 0.15 (+/−0.02) | 0.16 (+/−0.00) | 0.19 (+/−0.01) | 0.18 (+/−0.04) | 0.14 (+/−0.00) |
Nadolol | 0.06 (+/−0.01) | 0.08 (+/−0.01) | 0.08 (+/−0.00) | 0.08 (+/−0.00) | 0.11 (+/−0.03) |
Acyclovir | 0.15 (+/−0.03) | 0.17 (+/−0.00) | 0.08 (+/−0.00) | 0.22 (+/−0.02) | 0.14 (+/−0.02) |
L-Thyroxine | 0.74 (+/−0.06) | 0.75 (+/−0.04) | ND | 0.71 (+/−0.03) | ND |
Basolateral to Apical Compartment | No Excipient | Mannitol | Maltitol | Sorbitol | Xylitol |
---|---|---|---|---|---|
Papp (×10−6 cms−1) | |||||
Furosemide | 5.88 (+/−0.09) | 5.16 (+/−0.02) | 5.83 (+/−0.31) | 5.86 (+/−0.65) | 5.41 (+/−0.01) |
Amiloride | 0.46 (+/−0.11) | 0.28 (+/−0.07) | 0.34 (+/−0.09) | 0.29 (+/−0.01) | 0.24 (+/−0.00) |
Atenolol | 0.14 (+/−0.02) | 0.19 (+/−0.01) | 0.22 (+/−0.06) | 0.21 (+/−0.02) | 0.23 (+/−0.00) |
Ranitidine | 0.40 (+/−0.02) | 0.44 (+/−0.01) | 0.39 (+/−0.02) | 0.40 (+/−0.01) | 0.45 (+/−0.06) |
Nadolol | 0.10 (+/−0.09) | 0.18 (+/−0.01) | 0.17 (+/−0.01) | 0.19 (+/−0.00) | 0.32 (+/−0.02) |
Acyclovir | 0.36 (+/−0.08) | 0.31 (+/−0.07) | 0.14 (+/−0.11) | 0.09 (+/−0.13) | 0.17 (+/−0.00) |
L-Thyroxine | 0.40 (+/−0.02) | 0.29 (+/−0.05) | ND | 0.28 (+/−0.02) | ND |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Truffin, D.; Häusler, O.; Martin, M.; Cotier, S.; Laparre, J.; Ramnath, M. Polyols Permeability on Caco-2 Cells and Their Effects on Transport of Low-Permeability Drugs. Future Pharmacol. 2023, 3, 229-237. https://doi.org/10.3390/futurepharmacol3010016
Truffin D, Häusler O, Martin M, Cotier S, Laparre J, Ramnath M. Polyols Permeability on Caco-2 Cells and Their Effects on Transport of Low-Permeability Drugs. Future Pharmacology. 2023; 3(1):229-237. https://doi.org/10.3390/futurepharmacol3010016
Chicago/Turabian StyleTruffin, Damien, Olaf Häusler, Maryse Martin, Sandrine Cotier, Jerôme Laparre, and Manilduth Ramnath. 2023. "Polyols Permeability on Caco-2 Cells and Their Effects on Transport of Low-Permeability Drugs" Future Pharmacology 3, no. 1: 229-237. https://doi.org/10.3390/futurepharmacol3010016
APA StyleTruffin, D., Häusler, O., Martin, M., Cotier, S., Laparre, J., & Ramnath, M. (2023). Polyols Permeability on Caco-2 Cells and Their Effects on Transport of Low-Permeability Drugs. Future Pharmacology, 3(1), 229-237. https://doi.org/10.3390/futurepharmacol3010016