Tramadol Steady-State Pharmacokinetics of Immediate-Release Capsules and Sustained-Release Tablets in Dogs
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Raffa, R.B.; Friderichs, E.; Reimann, W.; Shank, R.P.; Codd, E.E.; Vaught, J.L. Opioid and nonopioid components independently contribute to the mechanism of action of tramadol, an ‘atypical’ opioid analgesic. J. Pharmacol. Exp. Ther. 1992, 260, 275–285. [Google Scholar] [PubMed]
- Perez Jimenez, T.E.; Mealey, K.L.; Grubb, T.L.; Greene, S.A.; Court, M.H. Tramadol metabolism to O-desmethyl tramadol (M1) and N-desmethyl tramadol (M2) by dog liver microsomes: Species comparison and identification of responsible canine cytochrome P-450s (CYPs). Drug Metab. Dispos. 2016, 44, 1963–1972, Erratum in Drug Metab Dispos. 2017, 45, 706. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Perez Jimenez, T.E.; Mealey, K.L.; Schnider, D.; Grubb, T.L.; Greene, S.A.; Court, M.H. Identification of canine cytochrome P-450s (CYPs) metabolizing the tramadol (+)-M1 and (+)-M2 metabolites to the tramadol (+)-M5 metabolite in dog liver microsomes. J. Vet. Pharmacol. Ther. 2018, 41, 815–824. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kukanich, B.; Papich, M.G. Pharmacokinetics and antinociceptive effects of oral tramadol hydrochloride administration in Greyhounds. Am. J. Vet. Res. 2011, 72, 256–262. [Google Scholar] [CrossRef] [PubMed]
- Giorgi, M.; Saccomanni, G.; Lebkowska-Wieruszewska, B.; Kowalski, C. Pharmacokinetic evaluation of tramadol and its major metabolites after single oral sustained tablet administration in the dog: A pilot study. Vet. J. 2009, 180, 253–255. [Google Scholar] [CrossRef] [PubMed]
- Kögel, B.; Terlinden, R.; Schneider, J. Characterisation of tramadol, morphine and tapentadol in an acute pain model in Beagle dogs. Vet. Anaesth. Analg. 2014, 41, 297–304. [Google Scholar] [CrossRef] [PubMed]
- Giorgi, M.; Del Carlo, S.; Saccomanni, G.; Łebkowska-Wieruszewska, B.; Kowalski, C.J. Pharmacokinetic and urine profile of tramadol and its major metabolites following oral immediate release capsules administration in dogs. Vet. Res. Commun. 2009, 33, 875–885. [Google Scholar] [CrossRef] [PubMed]
- Schütter, A.F.; Tünsmeyer, J.; Kästner, S.B.R. Influence of tramadol on acute thermal and mechanical cutaneous nociception in dogs. Vet. Anaesth. Analg. 2017, 44, 309–316. [Google Scholar] [CrossRef] [PubMed]
- American Society of Anesthesiologists Task Force on Acute Pain Management. Practice guidelines for acute pain management in the perioperative setting: An updated report by the American Society of Anesthesiologists Task Force on Acute Pain Management. Anesthesiology 2012, 116, 248–273. [Google Scholar] [CrossRef] [PubMed]
- Eisen, S.A.; Miller, D.K.; Woodward, R.S.; Spitznagel, E.; Przybeck, T.R. The effect of prescribed daily dose frequency on patient medication compliance. Arch. Intern Med. 1990, 150, 1881–1884. [Google Scholar] [CrossRef] [PubMed]
- Leenen, F.H.; Wilson, T.W.; Bolli, P.; Larochelle, P.; Myers, M.; Handa, S.P.; Boileau, G.; Tanner, J. Patterns of compliance with once versus twice daily antihypertensive drug therapy in primary care: A randomized clinical trial using electronic monitoring. Can. J. Cardiol. 1997, 13, 914–920. [Google Scholar] [PubMed]
- Petrilla, A.A.; Benner, J.S.; Battleman, D.S.; Tierce, J.C.; Hazard, E.H. Evidence-based interventions to improve patient compliance with antihypertensive and lipid-lowering medications. Int. J. Clin. Pract. 2005, 59, 1441–1451. [Google Scholar] [CrossRef] [PubMed]
- Wareham, K.J.; Brennan, M.L.; Dean, R.S. Systematic review of the factors affecting cat and dog owner compliance with pharmaceutical treatment recommendations. Vet. Rec. 2019, 184, 154. [Google Scholar] [CrossRef] [PubMed]
- Barter, L.S.; Watson, A.D.; Maddison, J.E. Owner compliance with short term antimicrobial medication in dogs. Aust. Vet. J. 1996, 74, 277–280. [Google Scholar] [CrossRef] [PubMed]
- Toutain, P.L.; Ferran, A.; Bousquet-Mélou, A. Species differences in pharmacokinetics and pharmacodynamics. Handb. Exp. Pharmacol. 2010, 199, 19–48. [Google Scholar] [CrossRef] [PubMed]
- Hughes, J.H.; Upton, R.N.; Foster, D.J.R. Comparison of non-compartmental and mixed effect modelling methods for establishing bioequivalence for the case of two compartment kinetics and censored concentrations. J. Pharmacokinet. Pharmacodyn. 2017, 44, 233–244. [Google Scholar] [CrossRef] [PubMed]
- Barnett, H.Y.; Geys, H.; Jacobs, T.; Jaki, T. Methods for Non-Compartmental Pharmacokinetic Analysis With Observations Below the Limit of Quantification. Stat. Biopharm. Res. 2021, 13, 59–70. [Google Scholar] [CrossRef]
- Hing, J.P.; Woolfrey, S.G.; Greenslade, D.; Wright, P.M. Analysis of toxicokinetic data using NONMEM: Impact of quantification limit and replacement strategies for censored data. J. Pharmacokinet. Pharmacodyn. 2001, 28, 465–479. [Google Scholar] [CrossRef] [PubMed]
- Johnson, J.R. Methods for Handling Concentration Values Below the Limit of Quantification in PK Studies. In PhUSE US Connect 2018; Kent Innovation Centre: Broadstairs, UK, 2018; pp. 1–9. [Google Scholar]
- Beal, S.L. Ways to fit a PK model with some data below the quantification limit. J. Pharmacokinet. Pharmacodyn. 2001, 28, 481–504, Erratum in J. Pharmacokinet. Pharmacodyn. 2002, 29, 309. [Google Scholar] [CrossRef] [PubMed]
- Irby, D.J.; Ibrahim, M.E.; Dauki, A.M.; Badawi, M.A.; Illamola, S.M.; Chen, M.; Wang, Y.; Liu, X.; Phelps, M.A.; Mould, D.R. Approaches to handling missing or “problematic” pharmacology data: Pharmacokinetics. CPT Pharmacometrics Syst. Pharmacol. 2021, 10, 291–308. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yáñez, J.A.; Remsberg, C.M.; Sayre, C.L.; Forrest, M.L.; Davies, N.M. Flip-flop pharmacokinetics--delivering a reversal of disposition: Challenges and opportunities during drug development. Ther. Deliv. 2011, 2, 643–672. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Garrison, K.L.; Sahin, S.; Benet, L.Z. Few Drugs Display Flip-Flop Pharmacokinetics and These Are Primarily Associated with Classes 3 and 4 of the BDDCS. J. Pharm. Sci. 2015, 104, 3229–3235. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lintz, W.; Barth, H.; Osterloh, G.; Schmidt-Böthelt, E. Bioavailability of enteral tramadol formulations. 1st communication: Capsules. Arzneimittelforschung 1986, 36, 1278–1283. [Google Scholar] [PubMed]
- Lehmann, K.A.; Kratzenberg, U.; Schroeder-Bark, B.; Horrichs-Haermeyer, G. Postoperative patient-controlled analgesia with tramadol: Analgesic efficacy and minimum effective concentrations. Clin. J. Pain. 1990, 6, 212–220. [Google Scholar] [CrossRef] [PubMed]
- Grond, S.; Meuser, T.; Uragg, H.; Stahlberg, H.J.; Lehmann, K.A. Serum concentrations of tramadol enantiomers during patient-controlled analgesia. Br. J. Clin. Pharmacol. 1999, 48, 254–257. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sarbu, A.; Radulescu, F.; Robertson, S.; Bouchard, S. Onset of analgesic effect and plasma levels of controlled-release tramadol (Tramadol Contramid once-a-day) 200-mg tablets in patients with acute low back pain. J. Opioid Manag. 2008, 4, 285–292. [Google Scholar] [CrossRef] [PubMed]
- Donati, P.A.; Tarragona, L.; Franco, J.V.A.; Kreil, V.; Fravega, R.; Diaz, A.; Verdier, N.; Otero, P.E. Efficacy of tramadol for postoperative pain management in dogs: Systematic review and meta-analysis. Vet. Anaesth. Analg. 2021, 48, 283–296. [Google Scholar] [CrossRef] [PubMed]
- Kendall, J.; Papich, M.G. Posaconazole pharmacokinetics after administration of an intravenous solution, oral suspension, and delayed-release tablet to dogs. Am. J. Vet. Res. 2015, 76, 454–459. [Google Scholar] [CrossRef] [PubMed]
- Boozer, L.B.; Platt, S.R.; Haley, A.C.; Linville, A.V.; Kent, M.; Barron, L.E.; Nie, B.; Arnold, R.D. Pharmacokinetic evaluation of immediate- and extended-release formulations of levetiracetam in dogs. Am. J. Vet. Res. 2015, 76, 719–723. [Google Scholar] [CrossRef] [PubMed]
- Thomason, J.D.; Boothe, D.; KuKanich, B.; Rapoport, G. Pharmacokinetic evaluation of a sustained-release compounded procainamide preparation after 24-h (acute) administration in normal dogs. J. Vet. Cardiol. 2019, 24, 58–63. [Google Scholar] [CrossRef] [PubMed]
- Bach, J.E.; Kukanich, B.; Papich, M.G.; McKiernan, B.C. Evaluation of the bioavailability and pharmacokinetics of two extended-release theophylline formulations in dogs. J. Am. Vet. Med. Assoc. 2004, 224, 1113–1119. [Google Scholar] [CrossRef] [PubMed]
- Cavett, C.L.; Li, Z.; McKiernan, B.C.; Reinhart, J.M. Pharmacokinetics of a modified, compounded theophylline product in dogs. J. Vet. Pharmacol. Ther. 2019, 42, 593–601. [Google Scholar] [CrossRef] [PubMed]
- Reinhart, J.M.; Perkowski, C.; Lester, C.; Campos, V.; Kadotani, S.; Li, Z.; McKiernan, B.C.; Fries, R. Multidose pharmacokinetics and safety of a modified, compounded theophylline product in dogs. J. Vet. Pharmacol. Ther. 2021, 44, 902–909. [Google Scholar] [CrossRef] [PubMed]
Analyte | Retention Time (min) | m/z Ratio | LLOQ (µg/L) | Range (µg/L) | Regression Coefficient | Bias (%) | CV (%) |
---|---|---|---|---|---|---|---|
Tramadol | 2.58 | 264.2 | 5 | 5–1500 | 0.99950 | 1.5–14.0 | 1.5–10.5 |
M1 | 2.40 | 250.2 | 5 | 5–1500 | 0.99868 | −1.2–13.0 | 3.4–10.2 |
M2 | 2.58 | 250.2 | 5 | 5–1500 | 0.99907 | −2.8–13.0 | 2.5–10.3 |
M5 | 2.41 | 236.2 | 5 | 5–1500 | 0.99837 | −3.7–14.0 | 2.9–11.3 |
Tramadol | M2 | M5 | ||||
---|---|---|---|---|---|---|
IR | SR | IR | SR | IR | SR | |
Tmax (h) | ||||||
Median | 1.75 | 6.00 | 2.0 | 7.5 | 1.25 | 6.0 |
Range | 0.75–2.00 | 3.00–9.00 | 0.5–4 | 3–15 | 0.75–2 | 1.5–9 |
Cmax (µg/L) | ||||||
Median | 35.3 | 107.5 | 304 | 345 | 52.5 | 66.3 |
Range | 17.0–213.5 | 1.10–380.6 | 131–397 | 53–590 | 29.7–84.7 | 24.7–107 |
Cmax/D (µg/L/mg/kg) | ||||||
Median | 11.1 | 7.74 | 85.5 | 24.6 | 14.4 | 5.3 |
Range | 4.8–70.4 | 0.09–25.3 | 37.1–131.1 | 4.5–39.2 | 10.1–28.0 | 2.1–7.1 |
Clast (µg/L) | ||||||
Median | 5.7 | 3.0 | 149 | 61.7 | 34.5 | 26.8 |
Range | 1.5–12.2 | 0.51–8.4 | 22.3–263 | 2.14–185 | 14.7–53.4 | 2.6–52.5 |
AUCtau (h × µg/L) | ||||||
Median | 95.5 | 783 | 1363 | 3794 | 246 | 1126 |
Range | 43.3–426.8 | 0–2619 | 405–1766 | 451–7239 | 130–404 | 317–1623 |
AUCtau/D (h × kg × µg/L/mg) | ||||||
Median | 29.8 | 55.5 | 378 | 302 | 67.2 | 83.1 |
Range | 12.2–140.8 | 0–174.1 | 114–540 | 38–481 | 43.8–133 | 26.8–114 |
AUCinf/D (h × kg × µg/L/mg) | ||||||
Median | 33.1 | 85.7 | 613 | 358 | 195 | 143 |
Range | 13.6–144.3 | 14.9–175.3 | 135–933 | 39.1–830 | 78.0–379 | 29.1–233 |
% extrapolated AUC0-inf | 10.0% | 35.2% | 38.3% | 15.6% | 65.5% | 41.9% |
T1/2 (h) | ||||||
Median | 1.70 | 2.38 | 3.1 | 5.4 | 7.2 | 17.2 |
Range | 0.95–2.11 | 1.77–6.22 | 1.9–3.8 | 3.0–22.1 | 4.8–12.9 | 7.2–35.4 |
MRTlast | ||||||
Median | 2.20 | 7.72 | 2.8 | 10.2 | 2.8 | 10.7 |
Range | 1.52–2.87 | 0–10.52 | 2.1–3.1 | 6.6–13.2 | 2.5–2.9 | 9.2–12.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Winter, E.; van Geijlswijk, I.; Akkerdaas, I.; Sturkenboom, M.; Gehring, R. Tramadol Steady-State Pharmacokinetics of Immediate-Release Capsules and Sustained-Release Tablets in Dogs. Future Pharmacol. 2022, 2, 660-668. https://doi.org/10.3390/futurepharmacol2040040
Winter E, van Geijlswijk I, Akkerdaas I, Sturkenboom M, Gehring R. Tramadol Steady-State Pharmacokinetics of Immediate-Release Capsules and Sustained-Release Tablets in Dogs. Future Pharmacology. 2022; 2(4):660-668. https://doi.org/10.3390/futurepharmacol2040040
Chicago/Turabian StyleWinter, Esther, Ingeborg van Geijlswijk, Ies Akkerdaas, Marieke Sturkenboom, and Ronette Gehring. 2022. "Tramadol Steady-State Pharmacokinetics of Immediate-Release Capsules and Sustained-Release Tablets in Dogs" Future Pharmacology 2, no. 4: 660-668. https://doi.org/10.3390/futurepharmacol2040040
APA StyleWinter, E., van Geijlswijk, I., Akkerdaas, I., Sturkenboom, M., & Gehring, R. (2022). Tramadol Steady-State Pharmacokinetics of Immediate-Release Capsules and Sustained-Release Tablets in Dogs. Future Pharmacology, 2(4), 660-668. https://doi.org/10.3390/futurepharmacol2040040