Extraction of Bioactive Compounds from Cistus creticus Leaves and Their Use in the Preparation of Yogurt Desserts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals, Materials and Reagents
2.2. Extraction Procedure
2.3. Response Surface Methodology (RSM) Optimization of Extraction and Experiment Design
2.4. Quantification of Total Polyphenol Content (TPC)
2.5. Determination of Total Flavonoid Content (TFC)
2.6. Ferric-Reducing Antioxidant Power (FRAP) Assay
2.7. Evaluation of Antiradical Activity (DPPH• Assay)
2.8. HPLC–DAD Analysis
2.9. Yogurt Preparation and Preliminary Sensory Evaluation
2.10. Determination of Lactose in Yogurt Dessert Samples
2.11. Determination of the Degree of Syneresis
2.12. Determination of the Water-Holding Capacity
2.13. Statistical Analysis
3. Results and Discussion
3.1. Extraction Optimization
3.2. Optimal Extract Analysis
3.3. Analysis of the Enriched Yogurt Samples
3.4. Principal Component Analysis (PCA)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hayes, J.D.; Dinkova-Kostova, A.T.; Tew, K.D. Oxidative Stress in Cancer. Cancer Cell 2020, 38, 167–197. [Google Scholar] [CrossRef] [PubMed]
- Rathod, N.B.; Kulawik, P.; Ozogul, F.; Regenstein, J.M.; Ozogul, Y. Biological Activity of Plant-Based Carvacrol and Thymol and Their Impact on Human Health and Food Quality. Trends Food Sci. Technol. 2021, 116, 733–748. [Google Scholar] [CrossRef]
- Rathod, N.B.; Ranveer, R.C.; Benjakul, S.; Kim, S.-K.; Pagarkar, A.U.; Patange, S.; Ozogul, F. Recent Developments of Natural Antimicrobials and Antioxidants on Fish and Fishery Food Products. Compr. Rev. Food Sci. Food Saf. 2021, 20, 4182–4210. [Google Scholar] [CrossRef]
- Usman, I.; Hussain, M.; Imran, A.; Afzaal, M.; Saeed, F.; Javed, M.; Afzal, A.; Ashfaq, I.; Al Jbawi, E.; Saewan, S.A. Traditional and Innovative Approaches for the Extraction of Bioactive Compounds. Int. J. Food Prop. 2022, 25, 1215–1233. [Google Scholar] [CrossRef]
- Rathod, N.B.; Elabed, N.; Punia, S.; Ozogul, F.; Kim, S.-K.; Rocha, J.M. Recent Developments in Polyphenol Applications on Human Health: A Review with Current Knowledge. Plants 2023, 12, 1217. [Google Scholar] [CrossRef] [PubMed]
- Skorić, M.; Todorović, S.; Gligorijević, N.; Janković, R.; Živković, S.; Ristić, M.; Radulović, S. Cytotoxic Activity of Ethanol Extracts of in Vitro Grown Cistus creticus Subsp. Creticus L. on Human Cancer Cell Lines. Ind. Crops Prod. 2012, 38, 153–159. [Google Scholar] [CrossRef]
- Pamuk, A.; Gedikoğlu, A.; Sökmen, M. Use of a Natural Antioxidant, Cistus creticus Extract, on Lipid Oxidation and Shelf Life of Ready-to-Eat Beef Cocktail Sausages. J. Food Process. Preserv. 2022, 46, e16913. [Google Scholar] [CrossRef]
- Agnieszka Stępień, A.; David Aebisher, D.; Dorota Bartusik-Aebisher, D. Biological Properties of Cistus Species. Eur. J. Clin. Exp. Med. 2018, 16, 127–132. [Google Scholar] [CrossRef]
- Skorić, M.; Ćirić, A.; Budimir, S.; Janošević, D.; Anđelković, B.; Todosijević, M.; Todorović, S.; Soković, M.; Glamočlija, J.; Tešević, V.; et al. Bioactivity-Guided Identification and Isolation of a Major Antimicrobial Compound in Cistus creticus Subsp. Creticus Leaves and Resin “Ladano”. Ind. Crops Prod. 2022, 184, 114992. [Google Scholar] [CrossRef]
- Christodoulakis, N.S.; Georgoudi, M.; Fasseas, C. Leaf Structure of Cistus creticus L. (Rock Rose), a Medicinal Plant Widely Used in Folk Remedies Since Ancient Times. J. Herbs Spices Med. Plants 2014, 20, 103–114. [Google Scholar] [CrossRef]
- Karadağ, A.E.; Çaşkurlu, A.; Okur, M.E.; Guzelmeric, E.; Okur, N.Ü.; Tosun, F.; Yesilada, E.; Demirci, F. Hemostatic Activity of Cistus creticus Extract in Wistar Albino Rats. Rev. Bras. Farmacogn. 2020, 30, 844–847. [Google Scholar] [CrossRef]
- Atsalakis, E.; Chinou, I.; Makropoulou, M.; Karabournioti, S.; Graikou, K. Evaluation of Phenolic Compounds in Cistus creticus Bee Pollen from Greece. Antioxidant and Antimicrobial Properties. Nat. Prod. Commun. 2017, 12, 1934578X1701201141. [Google Scholar] [CrossRef]
- Matłok, N.; Lachowicz, S.; Gorzelany, J.; Balawejder, M. Influence of Drying Method on Some Bioactive Compounds and the Composition of Volatile Components in Dried Pink Rock Rose (Cistus creticus L.). Molecules 2020, 25, 2596. [Google Scholar] [CrossRef] [PubMed]
- Düz, M.; Yakut, Ö. Microwave-Assisted Green Synthesis, Characterization, and Antioxidant Activity of Silver Nanoparticles Using the Aqueous Extract of Cistus Creticus. Part. Sci. Technol. 2023, 41, 589–599. [Google Scholar] [CrossRef]
- Lukas, B.; Bragagna, L.; Starzyk, K.; Labedz, K.; Stolze, K.; Novak, J. Polyphenol Diversity and Antioxidant Activity of European Cistus creticus L. (Cistaceae) Compared to Six Further, Partly Sympatric Cistus Species. Plants 2021, 10, 615. [Google Scholar] [CrossRef]
- Kiliç, D.D.; Siriken, B.; Ertürk, Ö.; Tanrikulu, G.; Gül, M.; Baskan, C. Antibacterial, Antioxidant and DNA Interaction Properties of Cistus creticus L. Extracts. J. Int. Environ. Appl. Sci. 2019, 14, 110–115. [Google Scholar]
- Ait Lahcen, S.; El Hattabi, L.; Benkaddour, R.; Chahboun, N.; Ghanmi, M.; Satrani, B.; Tabyaoui, M.; Zarrouk, A. Chemical Composition, Antioxidant, Antimicrobial and Antifungal Activity of Moroccan Cistus creticus Leaves. Chem. Data Collect. 2020, 26, 100346. [Google Scholar] [CrossRef]
- Paolessi, P.; Nicoletti, M.; Catoni, R.; Puglielli, G.; Toniolo, C.; Gratani, L. Cistus creticus Subsp. Eriocephalus as a Model for Studying Plant Physiological and Metabolic Responses to Environmental Stress Factors. Chem. Biodivers. 2015, 12, 1862–1870. [Google Scholar] [CrossRef]
- Jankovics, I.; Borsos, M.; Mirani, S.; Dénes, B. Early Use of Polyphenol-Rich Cistus creticus Extract Containing Nasopharyngeal Spray Is Associated with Significantly Shorter Duration of Symptoms in Mild COVID-19 Patients: A Retrospective Case-Control Study. J. Community Med. Public Health Rep. 2021, 2, 1–5. [Google Scholar] [CrossRef]
- Lo Bianco, M.; Grillo, O.; Cañadas, E.; Venora, G.; Bacchetta, G. Inter- and Intraspecific Diversity in Cistus L. (Cistaceae) Seeds, Analysed with Computer Vision Techniques. Plant Biol. 2017, 19, 183–190. [Google Scholar] [CrossRef] [PubMed]
- Kuchta, K.; Tung, N.H.; Ohta, T.; Uto, T.; Raekiansyah, M.; Grötzinger, K.; Rausch, H.; Shoyama, Y.; Rauwald, H.W.; Morita, K. The Old Pharmaceutical Oleoresin Labdanum of Cistus creticus L. Exerts Pronounced in Vitro Anti-Dengue Virus Activity. J. Ethnopharmacol. 2020, 257, 112316. [Google Scholar] [CrossRef] [PubMed]
- Maggi, F.; Lucarini, D.; Papa, F.; Peron, G.; Dall’Acqua, S. Phytochemical Analysis of the Labdanum-Poor Cistus creticus Subsp. Eriocephalus (Viv.) Greuter et Burdet Growing in Central Italy. Biochem. Syst. Ecol. 2016, 66, 50–57. [Google Scholar] [CrossRef]
- Favela-González, K.M.; Hernández-Almanza, A.Y.; De la Fuente-Salcido, N.M. The Value of Bioactive Compounds of Cruciferous Vegetables (Brassica) as Antimicrobials and Antioxidants: A Review. J. Food Biochem. 2020, 44, e13414. [Google Scholar] [CrossRef]
- Ben-Othman, S.; Jõudu, I.; Bhat, R. Bioactives from Agri-Food Wastes: Present Insights and Future Challenges. Molecules 2020, 25, 510. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.-Y.; Lu, Y.-H.; Liu, X.-T.; Wu, W.-T.; Li, W.-Q.; Lai, S.-Q.; Aadil, R.M.; Riaz Rajoka, M.S.; Wang, L.-H.; Zeng, X.-A. Metabolic Properties, Functional Characteristics, and Practical Application of Streptococcus Thermophilus. Food Rev. Int. 2023, 1–22. [Google Scholar] [CrossRef]
- Riaz Rajoka, M.S.; Mehwish, H.M.; Siddiq, M.; Haobin, Z.; Zhu, J.; Yan, L.; Shao, D.; Xu, X.; Shi, J. Identification, Characterization, and Probiotic Potential of Lactobacillus Rhamnosus Isolated from Human Milk. LWT 2017, 84, 271–280. [Google Scholar] [CrossRef]
- Tang, W.; Dong, M.; Wang, W.; Han, S.; Rui, X.; Chen, X.; Jiang, M.; Zhang, Q.; Wu, J.; Li, W. Structural Characterization and Antioxidant Property of Released Exopolysaccharides from Lactobacillus Delbrueckii ssp. Bulgaricus SRFM-1. Carbohydr. Polym. 2017, 173, 654–664. [Google Scholar] [CrossRef] [PubMed]
- De Simone, C. The Unregulated Probiotic Market. Clin. Gastroenterol. Hepatol. 2019, 17, 809–817. [Google Scholar] [CrossRef]
- Dowarah, R.; Verma, A.K.; Agarwal, N.; Singh, P.; Singh, B.R. Selection and Characterization of Probiotic Lactic Acid Bacteria and Its Impact on Growth, Nutrient Digestibility, Health and Antioxidant Status in Weaned Piglets. PLoS ONE 2018, 13, e0192978. [Google Scholar] [CrossRef]
- Tsai, Y.-L.; Lin, T.-L.; Chang, C.-J.; Wu, T.-R.; Lai, W.-F.; Lu, C.-C.; Lai, H.-C. Probiotics, Prebiotics and Amelioration of Diseases. J. Biomed. Sci. 2019, 26, 3. [Google Scholar] [CrossRef]
- Palaiogiannis, D.; Chatzimitakos, T.; Athanasiadis, V.; Bozinou, E.; Makris, D.P.; Lalas, S.I. Successive Solvent Extraction of Polyphenols and Flavonoids from Cistus creticus L. Leaves. Oxygen 2023, 3, 274–286. [Google Scholar] [CrossRef]
- Chatzimitakos, T.; Athanasiadis, V.; Makrygiannis, I.; Kalompatsios, D.; Bozinou, E.; Lalas, S.I. An Investigation into Crithmum Maritimum L. Leaves as a Source of Antioxidant Polyphenols. Compounds 2023, 3, 532–551. [Google Scholar] [CrossRef]
- Manousaki, A.; Jancheva, M.; Grigorakis, S.; Makris, D.P. Extraction of Antioxidant Phenolics from Agri-Food Waste Biomass Using a Newly Designed Glycerol-Based Natural Low-Transition Temperature Mixture: A Comparison with Conventional Eco-Friendly Solvents. Recycling 2016, 1, 194–204. [Google Scholar] [CrossRef]
- Shehata, E.; Grigorakis, S.; Loupassaki, S.; Makris, D.P. Extraction Optimisation Using Water/Glycerol for the Efficient Recovery of Polyphenolic Antioxidants from Two Artemisia Species. Sep. Purif. Technol. 2015, 149, 462–469. [Google Scholar] [CrossRef]
- Palaiogiannis, D.; Athanasiadis, V.; Bozinou, E.; Chatzimitakos, T.; Makris, D.P.; Lalas, S.I. Extraction of Polyphenolic and Volatile Compounds from Cistus creticus Using Deep Eutectic Solvents and Pulsed Electric Fields. Compounds 2022, 2, 311–320. [Google Scholar] [CrossRef]
- Arab, M.; Yousefi, M.; Khanniri, E.; Azari, M.; Ghasemzadeh-Mohammadi, V.; Mollakhalili-Meybodi, N. A Comprehensive Review on Yogurt Syneresis: Effect of Processing Conditions and Added Additives. J. Food Sci. Technol. 2023, 60, 1656–1665. [Google Scholar] [CrossRef] [PubMed]
- Montgomery, R. Further studies of the phenolsulfuric acid reagent for carbohydrates. Biochim. Biophys. Acta 1961, 48, 591–593. [Google Scholar] [CrossRef] [PubMed]
- Akalın, A.S.; Unal, G.; Dinkci, N.; Hayaloglu, A.A. Microstructural, Textural, and Sensory Characteristics of Probiotic Yogurts Fortified with Sodium Calcium Caseinate or Whey Protein Concentrate. J. Dairy Sci. 2012, 95, 3617–3628. [Google Scholar] [CrossRef]
- Spigno, G.; Tramelli, L.; De Faveri, D.M. Effects of Extraction Time, Temperature and Solvent on Concentration and Antioxidant Activity of Grape Marc Phenolics. J. Food Eng. 2007, 81, 200–208. [Google Scholar] [CrossRef]
- Yilmaz, Y.; Toledo, R.T. Oxygen Radical Absorbance Capacities of Grape/Wine Industry Byproducts and Effect of Solvent Type on Extraction of Grape Seed Polyphenols. J. Food Compos. Anal. 2006, 19, 41–48. [Google Scholar] [CrossRef]
- Lapornik, B.; Prošek, M.; Golc Wondra, A. Comparison of Extracts Prepared from Plant By-Products Using Different Solvents and Extraction Time. J. Food Eng. 2005, 71, 214–222. [Google Scholar] [CrossRef]
- Abu-Orabi, S.T.; Al-Qudah, M.A.; Saleh, N.R.; Bataineh, T.T.; Obeidat, S.M.; Al-Sheraideh, M.S.; Al-Jaber, H.I.; Tashtoush, H.I.; Lahham, J.N. Antioxidant Activity of Crude Extracts and Essential Oils from Flower Buds and Leaves of Cistus creticus and Cistus Salviifolius. Arab. J. Chem. 2020, 13, 6256–6266. [Google Scholar] [CrossRef]
- Piluzza, G.; Bullitta, S. Correlations between Phenolic Content and Antioxidant Properties in Twenty-Four Plant Species of Traditional Ethnoveterinary Use in the Mediterranean Area. Pharm. Biol. 2011, 49, 240–247. [Google Scholar] [CrossRef] [PubMed]
- Ghalia, S.; Kitaz, A.; Waed, A. Evaluation of Radical Scavenging Activity, Total Phenolics and Total Flavonoids Contents of Cistus Species in Syria. Int. J. Pharmacogn. Phytochem. Res. 2016, 8, 1071–1077. [Google Scholar]
- Viapiana, A.; Konopacka, A.; Waleron, K.; Wesolowski, M. Cistus Incanus L. Commercial Products as a Good Source of Polyphenols in Human Diet. Ind. Crops Prod. 2017, 107, 297–304. [Google Scholar] [CrossRef]
- Hitl, M.; Bijelić, K.; Stilinović, N.; Božin, B.; Srđenović-Čonić, B.; Torović, L.; Kladar, N. Phytochemistry and Antihyperglycemic Potential of Cistus Salviifolius L., Cistaceae. Molecules 2022, 27, 8003. [Google Scholar] [CrossRef] [PubMed]
- Sayah, K.; Marmouzi, I.; Naceiri Mrabti, H.; Cherrah, Y.; Faouzi, M.E.A. Antioxidant Activity and Inhibitory Potential of Cistus Salviifolius (L.) and Cistus Monspeliensis (L.) Aerial Parts Extracts against Key Enzymes Linked to Hyperglycemia. BioMed Res. Int. 2017, 2017, e2789482. [Google Scholar] [CrossRef]
- Mastino, P.M.; Mauro, M.; Jean, C.; Juliano, C.; Marianna, U. Analysis and Potential Antimicrobial Activity of Phenolic Compounds in the Extracts of Cistus creticus Subspecies from Sardinia. Nat. Prod. J. 2018, 8, 166–174. [Google Scholar] [CrossRef]
- Santagati, N.A.; Salerno, L.; Attaguile, G.; Savoca, F.; Ronsisvalle, G. Simultaneous Determination of Catechins, Rutin, and Gallic Acid in Cistus Species Extracts by HPLC with Diode Array Detection. J. Chromatogr. Sci. 2008, 46, 150–156. [Google Scholar] [CrossRef]
- Zamberlin, Š.; Samaržija, D. The Effect of Non-Standard Heat Treatment of Sheep’s Milk on Physico-Chemical Properties, Sensory Characteristics, and the Bacterial Viability of Classical and Probiotic Yogurt. Food Chem. 2017, 225, 62–68. [Google Scholar] [CrossRef]
- Sánchez, L.; Pérez, M.D.; Parrón, J.A. HPP in Dairy Products: Impact on Quality and Applications. In Present and Future of High Pressure Processing; Barba, F.J., Tonello-Samson, C., Puértolas, E., Lavilla, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 245–272. ISBN 978-0-12-816405-1. [Google Scholar]
- Marchiani, R.; Bertolino, M.; Belviso, S.; Giordano, M.; Ghirardello, D.; Torri, L.; Piochi, M.; Zeppa, G. Yogurt Enrichment with Grape Pomace: Effect of Grape Cultivar on Physicochemical, Microbiological and Sensory Properties. J. Food Qual. 2015, 39, 77–89. [Google Scholar] [CrossRef]
- Sanz, T.; Salvador, A.; Jiménez, A.; Fiszman, S.M. Yogurt Enrichment with Functional Asparagus Fibre. Effect of Fibre Extraction Method on Rheological Properties, Colour, and Sensory Acceptance. Eur. Food Res. Technol. 2008, 227, 1515–1521. [Google Scholar] [CrossRef]
- Akalan, M.; Bayrak Akay, K.; Başyiğit, B.; Karakuş, M.Ş.; Yücetepe, M.; Karaaslan, A.; Karaaslan, M. Instant Stevia Powder as a Novel Potential Additive for Enhancing Nutritional Value and Quality Characteristics of Yogurt. J. Food Sci. Technol. 2023, 1–11. [Google Scholar] [CrossRef]
- Karki, S.; Prajapati, S.; Bhattarai, S. Preparation and Quality Evaluation of Yogurt by Incorporation with Moringa Oleifera Leaves Powder. Acta Sci. Nutr. Health 2020, 4, 2–8. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, J.; Lv, M.; Shao, Z.; Hungwe, M.; Wang, J.; Bai, X.; Xie, J.; Wang, Y.; Geng, W. Metabolism Characteristics of Lactic Acid Bacteria and the Expanding Applications in Food Industry. Front. Bioeng. Biotechnol. 2021, 9, 612285. [Google Scholar] [CrossRef]
Independent Variables | Coded Units | Coded Levels | ||
---|---|---|---|---|
−1 | 0 | 1 | ||
Liquid-to-solid ratio (mL/g) | X1 | 20 | 35 | 50 |
T (°C) | X2 | 20 | 50 | 80 |
t (min) | X3 | 30 | 90 | 150 |
Design Point | Independent Variables | Response (TPC, mg GAE/g dw) | |||
---|---|---|---|---|---|
X1 (Liquid-to-Solid Ratio, mL/g) | X2 (T, °C) | X3 (t, min) | Actual | Predicted | |
1 | −1 (20) | −1 (20) | 0 (90) | 74.01 | 68.89 |
2 | −1 (20) | 1 (80) | 0 (90) | 50.07 | 49.32 |
3 | 1 (50) | −1 (20) | 0 (90) | 52.50 | 53.25 |
4 | 1 (50) | 1 (80) | 0 (90) | 112.22 | 117.34 |
5 | 0 (35) | −1 (20) | −1 (30) | 71.08 | 69.93 |
6 | 0 (35) | −1 (20) | 1 (150) | 59.15 | 64.68 |
7 | 0 (35) | 1 (80) | −1 (30) | 115.59 | 110.07 |
8 | 0 (35) | 1 (80) | 1 (150) | 67.90 | 69.06 |
9 | −1 (20) | 0 (50) | −1 (30) | 102.24 | 108.52 |
10 | 1 (50) | 0 (50) | −1 (30) | 96.64 | 97.04 |
11 | −1 (20) | 0 (50) | 1 (150) | 48.12 | 47.72 |
12 | 1 (50) | 0 (50) | 1 (150) | 117.86 | 111.58 |
13 | 0 (35) | 0 (50) | 0 (90) | 62.25 | 63.56 |
14 | 0 (35) | 0 (50) | 0 (90) | 64.42 | 63.56 |
15 | 0 (35) | 0 (50) | 0 (90) | 64.02 | 63.56 |
Parameters | Optimum Aqueous Extract |
---|---|
YTP (mg GAE/g dw) 1 | 157.17 ± 10.37 |
YTFn (mg QE/g dw) 2 | 2.38 ± 0.14 |
PR (μmol AAE/g dw) 3 | 1258.52 ± 36.5 |
AAR (μmol AAE/g dw) 3 | 933.67 ± 52.29 |
A/A | Identified Polyphenol | Maximum Wavelength (nm) | Optimum Aqueous Extract (mg/g) |
---|---|---|---|
1 | Luteolin glucoside derivative | 272 | 0.28 ± 0.02 |
2 | 1_Myricetin glucoside derivative | 264 | 3.27 ± 0.1 |
3 | Myricetin rhamnoside | 262 | 16.36 ± 0.44 |
4 | 1_Quercetin glucoside derivative | 265 | 0.05 ± 0 |
5 | Rutin | 267 | 0.08 ± 0 |
6 | 2_Quercetin glucoside derivative | 267 | 0.64 ± 0.05 |
7 | Quercetin rhamnoside derivative | 262 | 5.47 ± 0.17 |
8 | 2_Myricetin glucoside derivative | 268 | 0.41 ± 0.02 |
9 | Luteolin 7-(2”-p-coumaroylglucoside) | 310 | 0.55 ± 0.02 |
Total identified polyphenols | 27.09 ± 1.34 |
Parameters | w/v % Optimum Aqueous Extract | ||
---|---|---|---|
0.01 | 0.05 | 0.1 | |
YTP (mg GAE/100 mL) 1 | 3.38 ± 0.09 c | 17.03 ± 0.7 b | 34.08 ± 1.19 a |
YTFn (mg QE/100 mL) 2 | - | 0.25 ± 0.02 b | 0.51 ± 0.02 a |
PR (μmol AAE/100 mL) 3 | 22.08 ± 0.6 c | 110.1 ± 7.71 b | 219.57 ± 12.74 a |
AAR (μmol AAE/100 mL) 3 | 16.81 ± 0.62 c | 82.82 ± 2.32 b | 165.18 ± 9.42 a |
Parameters | Treatments | Storage Period | ||
---|---|---|---|---|
1 Day | 10 Days | 21 Days | ||
Syneresis (% w/w) | Control | 60.58 ± 2.06 A,c | 73.58 ± 2.35 A,b | 90.58 ± 2.9 A,a |
0.01% | 56.05 ± 1.35 A,c | 66.18 ± 3.9 A,B,b | 83.64 ± 3.76 A,B,a | |
0.05% | 58.78 ± 4.06 A,b | 64.02 ± 1.98 B,b | 77.64 ± 4.66 B,a | |
0.10% | 58.06 ± 1.22 A,b | 63.46 ± 3.11 B,a,b | 67.86 ± 2.38 C,a | |
Water holding capacity (% w/w) | Control | 85.4 ± 6.41 A,a | 72.5 ± 3.99 A,b | 65.2 ± 1.43 C,b |
0.01% | 86.8 ± 3.39 A,a | 74.2 ± 2.52 A,b | 71.1 ± 1.49 B,b | |
0.05% | 87.2 ± 5.76 A,a | 75 ± 4.5 A,b | 72.7 ± 2.04 B,b | |
0.10% | 90.3 ± 5.6 A,a | 80.2 ± 2.73 A,b | 78.9 ± 2.37 A,b | |
Lactose (% w/w) | Control | 3.53 ± 0.13 A,a | 3.04 ± 0.17 B,b | 2.54 ± 0.12 B,c |
0.01% | 3.67 ± 0.07 A,a | 3.22 ± 0.24 A,B,b | 2.98 ± 0.17 A,b | |
0.05% | 3.71 ± 0.22 A,a | 3.41 ± 0.25 A,B,a,b | 3.12 ± 0.15 A,b | |
0.10% | 3.82 ± 0.29 A,a | 3.68 ± 0.12 A,a,b | 3.29 ± 0.12 A,b | |
pH | Control | 4.22 ± 0.19 A,a | 3.89 ± 0.2 A,a | 3.77 ± 0.26 A,a |
0.01% | 4.23 ± 0.27 A,a | 3.97 ± 0.12 A,a | 3.85 ± 0.13 A,a | |
0.05% | 4.24 ± 0.22 A,a | 3.98 ± 0.22 A,a | 3.88 ± 0.17 A,a | |
0.10% | 4.24 ± 0.29 A,a | 3.97 ± 0.28 A,a | 3.89 ± 0.28 A,a | |
YTP (mg GAE1/100 g) | Control | 1.46 ± 0.05 D,a | 1.15 ± 0.03 D,b | 0.74 ± 0.05 D,c |
0.01% | 3.21 ± 0.07 C,a | 2.25 ± 0.11 C,b | 1.12 ± 0.05 C,c | |
0.05% | 16.52 ± 0.93 B,a | 12.55 ± 0.72 B,b | 8.64 ± 0.64 B,c | |
0.10% | 31.28 ± 2.03 A,a | 26.04 ± 1.25 A,b | 19.47 ± 1.34 A,c | |
YTFn (mg QE2/100 g) | Control | - | - | - |
0.01% | - | - | - | |
0.05% | 0.21 ± 0.01 B,a | 0.15 ± 0.01 B,b | - | |
0.10% | 0.47 ± 0.01 A,a | 0.39 ± 0.01 A,b | 0.26 ± 0.02 c | |
PR (μmol AAE3/100 g) | Control | 3.08 ± 0.22 D,a | 2.45 ± 0.18 D,b | 1.74 ± 0.07 D,c |
0.01% | 21.04 ± 1.14 C,a | 16.65 ± 0.95 C,b | 12.35 ± 0.9 C,c | |
0.05% | 105.25 ± 7.47 B,a | 90.25 ± 2.35 B,b | 74.65 ± 4.11 B,c | |
0.10% | 211.36 ± 7.19 A,a | 189.36 ± 12.69 A,a | 165.37 ± 4.63 A,b | |
AAR (μmol AAE/100 g) | Control | 2.44 ± 0.17 D,a | 1.85 ± 0.06 D,b | 1.11 ± 0.05 D,c |
0.01% | 15.65 ± 1.11 C,a | 12.36 ± 0.51 C,b | 9.36 ± 0.66 C,c | |
0.05% | 80.25 ± 3.21 B,a | 67.85 ± 4.14 B,b | 55.54 ± 2.22 B,c | |
0.10% | 161.36 ± 11.3 A,a | 142.35 ± 7.26 A,a,b | 124.87 ± 3.12 A,b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palaiogiannis, D.; Athanasiadis, V.; Chatzimitakos, T.; Mantiniotou, M.; Bozinou, E.; Makris, D.P.; Lalas, S.I. Extraction of Bioactive Compounds from Cistus creticus Leaves and Their Use in the Preparation of Yogurt Desserts. Oxygen 2024, 4, 90-107. https://doi.org/10.3390/oxygen4010005
Palaiogiannis D, Athanasiadis V, Chatzimitakos T, Mantiniotou M, Bozinou E, Makris DP, Lalas SI. Extraction of Bioactive Compounds from Cistus creticus Leaves and Their Use in the Preparation of Yogurt Desserts. Oxygen. 2024; 4(1):90-107. https://doi.org/10.3390/oxygen4010005
Chicago/Turabian StylePalaiogiannis, Dimitrios, Vassilis Athanasiadis, Theodoros Chatzimitakos, Martha Mantiniotou, Eleni Bozinou, Dimitris P. Makris, and Stavros I. Lalas. 2024. "Extraction of Bioactive Compounds from Cistus creticus Leaves and Their Use in the Preparation of Yogurt Desserts" Oxygen 4, no. 1: 90-107. https://doi.org/10.3390/oxygen4010005
APA StylePalaiogiannis, D., Athanasiadis, V., Chatzimitakos, T., Mantiniotou, M., Bozinou, E., Makris, D. P., & Lalas, S. I. (2024). Extraction of Bioactive Compounds from Cistus creticus Leaves and Their Use in the Preparation of Yogurt Desserts. Oxygen, 4(1), 90-107. https://doi.org/10.3390/oxygen4010005