Roles of Reactive Oxygen Species in Vascular Complications of Diabetes: Therapeutic Properties of Medicinal Plants and Food
Abstract
:1. Introduction
2. Involvement of Oxidative Stress in the Pathogenesis of Diabetes-Associated Vascular Dysfunction
3. ROS Production in Diabetes
4. ROS-Induced Vascular Dysfunction
4.1. Lipid Peroxidation
4.2. Protein Carbonylation
4.3. Glycation
5. Interaction of Oxidative Stress with Various Signaling Pathways
5.1. Keap1-Nrf2-ARE Signaling
5.2. NF-κB Signaling
5.3. PI3K/Akt/AMPK Signaling
5.4. MAPK Signaling
5.5. ER Stress
5.6. Apoptosis
6. Antioxidative Effects of Medicinal Plants in Experimental Settings
6.1. Salvia miltiorrhiza
6.2. Panax notoginseng and Panax ginseng
6.3. Chuanxiong
6.4. Astragalus
6.5. Carhamus tinctorius L.
6.6. Ginkgo biloba L.
6.7. Coptis chinensi
7. In Vitro and In Vivo Studies of Food
7.1. Berries
7.2. Cucurbitaceous Vegetables
7.3. Cruciferous Vegetables
7.4. Other Food
8. Clinical Applications of Antioxidant Treatment
9. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Einarson, T.R.; Acs, A.; Ludwig, C.; Panton, U.H. Prevalence of cardiovascular disease in type 2 diabetes: A systematic literature review of scientific evidence from across the world in 2007–2017. Cardiovasc. Diabetol. 2018, 17, 83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dal Canto, E.; Ceriello, A.; Rydén, L.; Ferrini, M.; Hansen, T.B.; Schnell, O.; Standl, E.; Beulens, J.W. Diabetes as a cardiovascular risk factor: An overview of global trends of macro and micro vascular complications. Eur. J. Prev. Cardiol. 2019, 26, 25–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, M.; Liu, Y.; Liang, Y.; Naruse, K.; Takahashi, K. Systematic Understanding of Pathophysiological Mechanisms of Oxidative Stress-Related Conditions—Diabetes Mellitus, Cardiovascular Diseases, and Ischemia–Reperfusion Injury. Front. Cardiovasc. Med. 2021, 8, 649785. [Google Scholar] [CrossRef] [PubMed]
- Kayama, Y.; Raaz, U.; Jagger, A.; Adam, M.; Schellinger, I.N.; Sakamoto, M.; Suzuki, H.; Toyama, K.; Spin, J.M.; Tsao, P.S. Diabetic Cardiovascular Disease Induced by Oxidative Stress. Int. J. Mol. Sci. 2015, 16, 25234–25263. [Google Scholar] [CrossRef] [PubMed]
- Battelli, M.G.; Polito, L.; Bolognesi, A. Xanthine oxidoreductase in atherosclerosis pathogenesis: Not only oxidative stress. Atherosclerosis 2014, 237, 562–567. [Google Scholar] [CrossRef] [Green Version]
- Paneni, F.; Beckman, J.A.; Creager, M.A.; Cosentino, F. Diabetes and vascular disease: Pathophysiology, clinical consequences, and medical therapy: Part I. Eur. Heart J. 2013, 34, 2436–2443. [Google Scholar] [CrossRef]
- Vega-López, S.; Devaraj, S.; Jialal, I. Oxidative Stress and Antioxidant Supplementation in the Management of Diabetic Cardiovascular Disease. J. Investig. Med. 2004, 52, 24–32. [Google Scholar] [CrossRef]
- Scott, J.A.; King, G.L. Oxidative stress and antioxidant treatment in diabetes. Ann. N. Y. Acad. Sci. 2004, 1031, 204–213. [Google Scholar] [CrossRef]
- Goszcz, K.; Deakin, S.J.; Duthie, G.G.; Stewart, D.; Leslie, S.J.; Megson, I.L. Antioxidants in Cardiovascular Therapy: Panacea or False Hope? Front. Cardiovasc. Med. 2015, 2, 29. [Google Scholar] [CrossRef]
- Yoshihara, D.; Fujiwara, N.; Suzuki, K. Antioxidants: Benefits and risks for long-term health. Maturitas 2010, 67, 103–107. [Google Scholar] [CrossRef]
- Forman, H.J.; Zhang, H. Targeting oxidative stress in disease: Promise and limitations of antioxidant therapy. Nat. Rev. Drug Discov. 2021, 20, 689–709. [Google Scholar] [CrossRef]
- Pruthi, S.; Allison, T.G.; Hensrud, D.D. Vitamin E supplementation in the prevention of coronary heart disease. Mayo Clin. Proc. 2001, 76, 1131–1136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shargorodsky, M.; Debby, O.; Matas, Z.; Zimlichman, R. Effect of long-term treatment with antioxidants (vitamin C, vitamin E, coenzyme Q10 and selenium) on arterial compliance, humoral factors and inflammatory markers in patients with multiple cardiovascular risk factors. Nutr. Metab. 2010, 7, 55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vivekananthan, D.P.; Penn, M.S.; Sapp, S.K.; Hsu, A.; Topol, E.J. Use of antioxidant vitamins for the prevention of cardiovascular disease: Meta-analysis of randomised trials. Lancet 2003, 361, 2017–2023. [Google Scholar] [CrossRef]
- Pellegrino, D. Antioxidants and cardiovascular risk factors. Diseases 2016, 4, 11. [Google Scholar] [CrossRef] [Green Version]
- Frei, B. Efficacy of Dietary Antioxidants to Prevent Oxidative Damage and Inhibit Chronic Disease. J. Nutr. 2004, 134, 3196S–3198S. [Google Scholar] [CrossRef]
- Sesso, H.D.; Buring, J.E.; Christen, W.G.; Kurth, T.; Belanger, C.; MacFadyen, J.; Bubes, V.; Manson, J.E.; Glynn, R.J.; Gaziano, J.M. Vitamins E and C in the Prevention of Cardiovascular Disease in Men: The Physicians’ Health Study II Randomized Controlled Trial. JAMA 2008, 300, 2123–2133. [Google Scholar] [CrossRef] [Green Version]
- De Luca, L.M.; Ross, S.A. Beta-Carotene Increases Lung Cancer Incidence in Cigarette Smokers. Nutr. Rev. 1996, 54, 178–180. [Google Scholar] [CrossRef]
- Sotler, R.; Poljšak, B.; Dahmane, R.; Jukić, T.; Pavan Jukić, D.; Rotim, C.; Trebše, P.; Starc, A. Prooxidant activities of antioxidants and their impact on health. Acta Clin. Croat. 2019, 58, 726–736. [Google Scholar] [CrossRef]
- Sharifi-Rad, M.; Anil Kumar, N.V.; Zucca, P.; Varoni, E.M.; Dini, L.; Panzarini, E.; Rajkovic, J.; Tsouh Fokou, P.V.; Azzini, E.; Peluso, I.; et al. Lifestyle, Oxidative Stress, and Antioxidants: Back and Forth in the Pathophysiology of Chronic Diseases. Front. Physiol. 2020, 11, 694. [Google Scholar] [CrossRef]
- Hodis, H.N.; Mack, W.J.; Dustin, L.; Mahrer, P.R.; Azen, S.P.; Detrano, R.; Selhub, J.; Alaupovic, P.; Liu, C.-R.; Liu, C.-H. High-dose B vitamin supplementation and progression of subclinical atherosclerosis: A randomized controlled trial. Stroke 2009, 40, 730–736. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Melnyk, J.P.; Tsao, R.; Marcone, M.F. How natural dietary antioxidants in fruits, vegetables and legumes promote vascular health. Food Res. Int. 2011, 44, 14–22. [Google Scholar] [CrossRef]
- Wang, B.-Q. Salvia miltiorrhiza: Chemical and pharmacological review of a medicinal plant. J. Med. Plants Res. 2010, 4, 2813–2820. [Google Scholar]
- Ren, J.; Fu, L.; Nile, S.H.; Zhang, J.; Kai, G. Salvia miltiorrhiza in Treating Cardiovascular Diseases: A Review on Its Pharmacological and Clinical Applications. Front. Pharmacol. 2019, 10, 753. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Chen, C.; Lu, W.; Wei, L. Phytochemistry, pharmacology, and clinical use of Panax notoginseng flowers buds. Phytother. Res. 2018, 32, 2155–2163. [Google Scholar] [CrossRef] [PubMed]
- Park, S.K.; Hyun, S.H.; In, G.; Park, C.-K.; Kwak, Y.-S.; Jang, Y.-J.; Kim, B.; Kim, J.-H.; Han, C.-K. The antioxidant activities of Korean Red Ginseng (Panax ginseng) and ginsenosides: A systemic review through in vivo and clinical trials. J. Ginseng Res. 2021, 45, 41–47. [Google Scholar] [CrossRef] [PubMed]
- Apel, K.; Hirt, H. Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol. 2004, 55, 373–399. [Google Scholar] [CrossRef] [Green Version]
- Xia, C.; Meng, Q.; Lin, L.Z.; Rojanasakul, Y.; Wang, X.R.; Jiang, B.H. Reactive oxygen species regulate angiogenesis and tumor growth through vascular endothelial growth factor. Cancer Res. 2007, 67, 10823–10830. [Google Scholar] [CrossRef] [Green Version]
- Thannickal, V.J.; Fanburg, B.L. Reactive oxygen species in cell signaling. Am. J. Physiol.-Lung Cell. Mol. Physiol. 2000, 279, L1005–L1028. [Google Scholar] [CrossRef] [Green Version]
- Sies, H. What is oxidative stress? In Oxidative Stress and Vascular Disease; Springer: Berlin/Heidelberg, Germany, 2000; pp. 1–8. [Google Scholar]
- Valko, M.; Leibfritz, D.; Moncol, J.; Cronin, M.T.D.; Mazur, M.; Telser, J. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol. 2007, 39, 44–84. [Google Scholar] [CrossRef]
- Sumbria, R.; Fisher, M. Chapter 8—Endothelium. In Primer on Cerebrovascular Diseases, 2nd ed.; Caplan, L.R., Biller, J., Leary, M.C., Lo, E.H., Thomas, A.J., Yenari, M., Zhang, J.H., Eds.; Academic Press: San Diego, CA, USA, 2017; pp. 47–51. [Google Scholar]
- Tousoulis, D.; Kampoli, A.-M.; Tentolouris Nikolaos Papageorgiou, C.; Stefanadis, C. The role of nitric oxide on endothelial function. Curr. Vasc. Pharmacol. 2012, 10, 4–18. [Google Scholar] [CrossRef] [PubMed]
- Tian, X.-L.; Li, Y. Endothelial Cell Senescence and Age-Related Vascular Diseases. J. Genet. Genom. 2014, 41, 485–495. [Google Scholar] [CrossRef]
- Griendling, K.K.; Ushio-Fukai, M. NADH/NADPH Oxidase and Vascular Function. Trends Cardiovasc. Med. 1997, 7, 301–307. [Google Scholar] [CrossRef]
- Suzuki, Y.J.; Ford, G.D. Redox regulation of signal transduction in cardiac and smooth muscle. J. Mol. Cell. Cardiol. 1999, 31, 345–353. [Google Scholar] [CrossRef]
- Matoba, T.; Shimokawa, H.; Nakashima, M.; Hirakawa, Y.; Mukai, Y.; Hirano, K.; Kanaide, H.; Takeshita, A. Hydrogen peroxide is an endothelium-derived hyperpolarizing factor in mice. J. Clin. Investig. 2000, 106, 1521–1530. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ray, P.D.; Huang, B.-W.; Tsuji, Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell. Signal. 2012, 24, 981–990. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaneto, H.; Katakami, N.; Matsuhisa, M.; Matsuoka, T.-a. Role of reactive oxygen species in the progression of type 2 diabetes and atherosclerosis. Mediat. Inflamm. 2010, 2010, 453892. [Google Scholar] [CrossRef] [Green Version]
- Xu, S.; He, Y.; Vokurkova, M.; Touyz, R.M. Endothelial cells negatively modulate reactive oxygen species generation in vascular smooth muscle cells: Role of thioredoxin. Hypertension 2009, 54, 427–433. [Google Scholar] [CrossRef] [Green Version]
- Turrens, J.F. Mitochondrial formation of reactive oxygen species. J. Physiol. 2003, 552, 335–344. [Google Scholar] [CrossRef]
- Taniyama, Y.; Griendling, K.K. Reactive oxygen species in the vasculature: Molecular and cellular mechanisms. Hypertension 2003, 42, 1075–1081. [Google Scholar] [CrossRef] [Green Version]
- Dröge, W. Free radicals in the physiological control of cell function. Physiol. Rev. 2002, 82, 47–95. [Google Scholar] [CrossRef] [PubMed]
- Touyz, R.; Briones, A. Reactive oxygen species and vascular biology: Implications in human hypertension. Hypertens. Res. 2011, 34, 5–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bagheri, S.C. 14—Medical Conditions. In Clinical Review of Oral and Maxillofacial Surgery; Bagheri, S.C., Jo, C., Eds.; Mosby: Saint Louis, MO, USA, 2008; pp. 363–409. [Google Scholar]
- Shintani, T.; Klionsky, D.J. Autophagy in health and disease: A double-edged sword. Science 2004, 306, 990–995. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rebolledo, O.; Dato, S.A. Postprandial hyperglycemia and hyperlipidemia-generated glycoxidative stress: Its contribution to the pathogenesis of diabetes complications. Eur. Rev. Med. Pharmacol. Sci. 2005, 9, 191. [Google Scholar]
- Huynh, K.; Kiriazis, H.; Du, X.-J.; Love, J.E.; Gray, S.P.; Jandeleit-Dahm, K.A.; McMullen, J.R.; Ritchie, R.H. Targeting the upregulation of reactive oxygen species subsequent to hyperglycemia prevents type 1 diabetic cardiomyopathy in mice. Free Radic. Biol. Med. 2013, 60, 307–317. [Google Scholar] [CrossRef]
- Zhong, P.; Wu, L.; Qian, Y.; Fang, Q.; Liang, D.; Wang, J.; Zeng, C.; Wang, Y.; Liang, G. Blockage of ROS and NF-κB-mediated inflammation by a new chalcone L6H9 protects cardiomyocytes from hyperglycemia-induced injuries. Biochim. Biophys. Acta (BBA)-Mol. Basis Dis. 2015, 1852, 1230–1241. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.; Zhuang, X.; Huang, Z.; Zou, J.; Yang, D.; Hu, X.; Du, Z.; Wang, L.; Liao, X. Klotho protects the heart from hyperglycemia-induced injury by inactivating ROS and NF-κB-mediated inflammation both in vitro and in vivo. Biochim. Biophys. Acta (BBA)-Mol. Basis Dis. 2018, 1864, 238–251. [Google Scholar] [CrossRef]
- Shen, E.; Li, Y.; Li, Y.; Shan, L.; Zhu, H.; Feng, Q.; Arnold, J.M.O.; Peng, T. Rac1 Is Required for Cardiomyocyte Apoptosis During Hyperglycemia. Diabetes 2009, 58, 2386–2395. [Google Scholar] [CrossRef] [Green Version]
- Volpe, C.M.O.; Villar-Delfino, P.H.; dos Anjos, P.M.F.; Nogueira-Machado, J.A. Cellular death, reactive oxygen species (ROS) and diabetic complications. Cell Death Dis. 2018, 9, 119. [Google Scholar] [CrossRef]
- Inoguchi, T.; Battan, R.; Handler, E.; Sportsman, J.R.; Heath, W.; King, G.L. Preferential elevation of protein kinase C isoform beta II and diacylglycerol levels in the aorta and heart of diabetic rats: Differential reversibility to glycemic control by islet cell transplantation. Proc. Natl. Acad. Sci. USA 1992, 89, 11059–11063. [Google Scholar] [CrossRef] [Green Version]
- Inoguchi, T.; Xia, P.; Kunisaki, M.; Higashi, S.; Feener, E.P.; King, G.L. Insulin’s effect on protein kinase C and diacylglycerol induced by diabetes and glucose in vascular tissues. Am. J. Physiol.-Endocrinol. Metab. 1994, 267, E369–E379. [Google Scholar] [CrossRef] [PubMed]
- Nishizuka, Y. Intracellular signaling by hydrolysis of phospholipids and activation of protein kinase C. Science 1992, 258, 607–614. [Google Scholar] [CrossRef] [PubMed]
- Das Evcimen, N.; King, G.L. The role of protein kinase C activation and the vascular complications of diabetes. Pharmacol. Res. 2007, 55, 498–510. [Google Scholar] [CrossRef]
- Yang, C.; Kazanietz, M.G. Divergence and complexities in DAG signaling: Looking beyond PKC. Trends Pharmacol. Sci. 2003, 24, 602–608. [Google Scholar] [CrossRef]
- Jansen, F.; Yang, X.; Franklin, B.S.; Hoelscher, M.; Schmitz, T.; Bedorf, J.; Nickenig, G.; Werner, N. High glucose condition increases NADPH oxidase activity in endothelial microparticles that promote vascular inflammation. Cardiovasc. Res. 2013, 98, 94–106. [Google Scholar] [CrossRef] [Green Version]
- Winkler, B.S.; DeSantis, N.; Solomon, F. Multiple NADPH-producing pathways control glutathione (GSH) content in retina. Exp. Eye Res. 1986, 43, 829–847. [Google Scholar] [CrossRef]
- Cardoso, S.; Correia, S.; Santos, R.; Carvalho, C.; Candeias, E.; Duarte, A.; Plácido, A.; Santos, M.; Moreira, P. Hyperglycemia, hypoglycemia and dementia: Role of mitochondria and uncoupling proteins. Curr. Mol. Med. 2013, 13, 586–601. [Google Scholar] [CrossRef]
- Adachi, T.; Ohta, H.; Hayashi, K.; Hirano, K.; Marklund, S.L. The site of nonenzymic glycation of human extracellular-superoxide dismutase in vitro. Free Radic. Biol. Med. 1992, 13, 205–210. [Google Scholar] [CrossRef]
- Wolff, S.P.; Dean, R.T. Glucose autoxidation and protein modification. The potential role of ‘autoxidative glycosylation’ in diabetes. Biochem. J. 1987, 245, 243–250. [Google Scholar] [CrossRef]
- Yan, L.J. Redox imbalance stress in diabetes mellitus: Role of the polyol pathway. Anim. Model. Exp. Med. 2018, 1, 7–13. [Google Scholar] [CrossRef]
- Cox, D.; Cohen, M.L. Effects of oxidized low-density lipoprotein on vascular contraction and relaxation: Clinical and pharmacological implications in atherosclerosis. Pharmacol. Rev. 1996, 48, 3–19. [Google Scholar] [PubMed]
- Tsimikas, S. Lipoproteins and oxidation. In Antioxidants and Cardiovascular Disease; Springer: Berlin/Heidelberg, Germany, 2006; pp. 17–48. [Google Scholar]
- Peluso, I.; Morabito, G.; Urban, L.; Ioannone, F.; Serafi, M. Oxidative stress in atherosclerosis development: The central role of LDL and oxidative burst. Endocr. Metab. Immune Disord.-Drug Targets (Former. Curr. Drug Targets-Immune Endocr. Metab. Disord.) 2012, 12, 351–360. [Google Scholar] [CrossRef] [PubMed]
- Förstermann, U.; Münzel, T. Endothelial nitric oxide synthase in vascular disease: From marvel to menace. Circulation 2006, 113, 1708–1714. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amiya, E. Interaction of hyperlipidemia and reactive oxygen species: Insights from the lipid-raft platform. World J. Cardiol. 2016, 8, 689–694. [Google Scholar] [CrossRef]
- Amiya, E.; Watanabe, M.; Takeda, N.; Saito, T.; Shiga, T.; Hosoya, Y.; Nakao, T.; Imai, Y.; Manabe, I.; Nagai, R.; et al. Angiotensin II Impairs Endothelial Nitric-oxide Synthase Bioavailability under Free Cholesterol-enriched Conditions via Intracellular Free Cholesterol-rich Membrane Microdomains. J. Biol. Chem. 2013, 288, 14497–14509. [Google Scholar] [CrossRef] [Green Version]
- Fang, Y.; Mohler III, E.R.; Hsieh, E.; Osman, H.; Hashemi, S.M.; Davies, P.F.; Rothblat, G.H.; Wilensky, R.L.; Levitan, I. Hypercholesterolemia suppresses inwardly rectifying K+ channels in aortic endothelium in vitro and in vivo. Circ. Res. 2006, 98, 1064–1071. [Google Scholar] [CrossRef] [Green Version]
- Perez, K.M.; Laughon, M. Sildenafil in Term and Premature Infants: A Systematic Review. Clin. Ther. 2015, 37, 2598–2607.e2591. [Google Scholar] [CrossRef]
- Förstermann, U.; Sessa, W.C. Nitric oxide synthases: Regulation and function. Eur. Heart J. 2011, 33, 829–837. [Google Scholar] [CrossRef] [Green Version]
- Tsutsui, M. Neuronal nitric oxide synthase as a novel anti-atherogenic factor. J. Atheroscler. Thromb. 2004, 11, 41–48. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.P.; Mitchelhill, K.I.; Michell, B.J.; Stapleton, D.; Rodriguez-Crespo, I.; Witters, L.A.; Power, D.A.; Ortiz de Montellano, P.R.; Kemp, B.E. AMP-activated protein kinase phosphorylation of endothelial NO synthase. FEBS Lett. 1999, 443, 285–289. [Google Scholar] [CrossRef] [Green Version]
- Creager, M.A.; Lüscher, T.F.; of, p.w.t.a.; Cosentino, F.; Beckman, J.A. Diabetes and vascular disease: Pathophysiology, clinical consequences, and medical therapy: Part I. Circulation 2003, 108, 1527–1532. [Google Scholar] [CrossRef] [Green Version]
- Du, X.L.; Edelstein, D.; Dimmeler, S.; Ju, Q.; Sui, C.; Brownlee, M. Hyperglycemia inhibits endothelial nitric oxide synthase activity by posttranslational modification at the Akt site. J. Clin. Investig. 2001, 108, 1341–1348. [Google Scholar] [CrossRef]
- Chu, S.; Bohlen, H.G. High concentration of glucose inhibits glomerular endothelial eNOS through a PKC mechanism. Am. J. Physiol.-Ren. Physiol. 2004, 287, F384–F392. [Google Scholar] [CrossRef] [Green Version]
- Negre-Salvayre, A.; Auge, N.; Ayala, V.; Basaga, H.; Boada, J.; Brenke, R.; Chapple, S.; Cohen, G.; Feher, J.; Grune, T.; et al. Pathological aspects of lipid peroxidation. Free Radic. Res. 2010, 44, 1125–1171. [Google Scholar] [CrossRef]
- Badimon, L.; Storey, R.F.; Vilahur, G. Update on lipids, inflammation and atherothrombosis. Thromb. Haemost. 2011, 105, S34–S42. [Google Scholar] [PubMed]
- Gopaul, N.K.; Änggård, E.E.; Mallet, A.I.; Betteridge, D.J.; Wolff, S.P.; Nourooz-Zadeh, J. Plasma 8-epi-PGF2 α levels are elevated in individuals with non-insulin dependent diabetes mellitus. FEBS Lett. 1995, 368, 225–229. [Google Scholar] [CrossRef] [Green Version]
- Gaweł, S.; Wardas, M.; Niedworok, E.; Wardas, P. Malondialdehyde (MDA) as a lipid peroxidation marker. Wiad. Lek. 2004, 57, 453–455. [Google Scholar] [PubMed]
- Samadi, A.; Sabuncuoglu, S.; Samadi, M.; Isikhan, S.Y.; Chirumbolo, S.; Peana, M.; Lay, I.; Yalcinkaya, A.; Bjorklund, G. A Comprehensive Review on Oxysterols and Related Diseases. Curr. Med. Chem. 2021, 28, 110–136. [Google Scholar] [CrossRef] [PubMed]
- Weigel, T.K.; Kulas, J.A.; Ferris, H.A. Oxidized cholesterol species as signaling molecules in the brain: Diabetes and Alzheimer’s disease. Neuronal Signal. 2019, 3, NS20190068. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vejux, A.; Lizard, G. Cytotoxic effects of oxysterols associated with human diseases: Induction of cell death (apoptosis and/or oncosis), oxidative and inflammatory activities, and phospholipidosis. Mol. Aspects Med. 2009, 30, 153–170. [Google Scholar] [CrossRef]
- Chistiakov, D.A.; Bobryshev, Y.V.; Orekhov, A.N. Macrophage-mediated cholesterol handling in atherosclerosis. J. Cell. Mol. Med. 2016, 20, 17–28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wong, C.-M.; Marcocci, L.; Das, D.; Wang, X.; Luo, H.; Zungu-Edmondson, M.; Suzuki, Y.J. Mechanism of protein decarbonylation. Free Radic. Biol. Med. 2013, 65, 1126–1133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cattaruzza, M.; Hecker, M. Protein carbonylation and decarboylation: A new twist to the complex response of vascular cells to oxidative stress. Circ. Res. 2008, 102, 273–274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hecker, M.; Wagner, A.H. Role of protein carbonylation in diabetes. J. Inherit. Metab. Dis. 2018, 41, 29–38. [Google Scholar] [CrossRef]
- Dalle-Donne, I.; Rossi, R.; Giustarini, D.; Gagliano, N.; Lusini, L.; Milzani, A.; Di Simplicio, P.; Colombo, R. Actin carbonylation: From a simple marker of protein oxidation to relevant signs of severe functional impairment. Free Radic. Biol. Med. 2001, 31, 1075–1083. [Google Scholar] [CrossRef]
- Lima, M.; Baynes, J.W. Glycation. In Encyclopedia of Biological Chemistry, 2nd ed.; Lennarz, W.J., Lane, M.D., Eds.; Academic Press: Waltham, MA, USA, 2013; pp. 405–411. [Google Scholar]
- Brownlee, M. The Pathobiology of Diabetic Complications: A Unifying Mechanism. Diabetes 2005, 54, 1615–1625. [Google Scholar] [CrossRef] [Green Version]
- Peng, W.H.; Lu, L.; Hu, J.; Yan, X.X.; Zhang, Q.; Zhang, R.Y.; Chen, Q.J.; Shen, W.F. Decreased serum esRAGE level is associated with angiographically determined coronary plaque progression in diabetic patients. Clin. Biochem. 2009, 42, 1252–1259. [Google Scholar] [CrossRef]
- Park, L.; Raman, K.G.; Lee, K.J.; Lu, Y.; Ferran, L.J.; Chow, W.S.; Stern, D.; Schmidt, A.M. Suppression of accelerated diabetic atherosclerosis by the soluble receptor for advanced glycation endproducts. Nat. Med. 1998, 4, 1025–1031. [Google Scholar] [CrossRef]
- Yamagishi, S.-i.; Maeda, S.; Matsui, T.; Ueda, S.; Fukami, K.; Okuda, S. Role of advanced glycation end products (AGEs) and oxidative stress in vascular complications in diabetes. Biochim. Biophys. Acta (BBA)-Gen. Subj. 2012, 1820, 663–671. [Google Scholar] [CrossRef]
- Chen, B.; Lu, Y.; Chen, Y.; Cheng, J. The role of Nrf2 in oxidative stress-induced endothelial injuries. J. Endocrinol. 2015, 225, R83–R99. [Google Scholar] [CrossRef] [Green Version]
- Lu, M.C.; Ji, J.A.; Jiang, Z.Y.; You, Q.D. The Keap1–Nrf2–ARE pathway as a potential preventive and therapeutic target: An update. Med. Res. Rev. 2016, 36, 924–963. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.-L.; Varner, S.E.; Rao, A.S.; Grey, J.Y.; Thomas, S.; Cook, C.K.; Wasserman, M.A.; Medford, R.M.; Jaiswal, A.K.; Kunsch, C. Laminar flow induction of antioxidant response element-mediated genes in endothelial cells: A novel anti-inflammatory mechanism. J. Biol. Chem. 2003, 278, 703–711. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pan, H.; Xue, C.; Auerbach, B.J.; Fan, J.; Bashore, A.C.; Cui, J.; Yang, D.Y.; Trignano, S.B.; Liu, W.; Shi, J. Single-cell genomics reveals a novel cell state during smooth muscle cell phenotypic switching and potential therapeutic targets for atherosclerosis in mouse and human. Circulation 2020, 142, 2060–2075. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Deng, J.; Yu, X.-J.; Yang, S.; Yang, Y.; Zang, W.-J. Activation of M3AchR (type 3 muscarinic acetylcholine receptor) and Nrf2 (nuclear factor erythroid 2–related factor 2) signaling by choline alleviates vascular smooth muscle cell phenotypic switching and vascular remodeling. Arterioscler. Thromb. Vasc. Biol. 2020, 40, 2649–2664. [Google Scholar] [CrossRef]
- Hayden, M.S.; Ghosh, S. Shared Principles in NF-κB Signaling. Cell 2008, 132, 344–362. [Google Scholar] [CrossRef] [Green Version]
- Chen, F.; Yang, R.; Luo, X.; Zhong, S.; LI, Z.; Zeng, T.; Wei, G. Effect of Rosiglitazone on Insulin Resistance and ROS. IKK Signaling Pathway in Vascular Endothelial Cells. Her. Med. 2014, 33, 1420–1423. [Google Scholar] [CrossRef] [Green Version]
- Jaspers, I.; Zhang, W.; Fraser, A.; Samet, J.M.; Reed, W. Hydrogen peroxide has opposing effects on IKK activity and I κ B α breakdown in airway epithelial cells. Am. J. Respir. Cell Mol. Biol. 2001, 24, 769–777. [Google Scholar] [CrossRef] [Green Version]
- Flohé, L.; Brigelius-Flohé, R.; Saliou, C.; Traber, M.G.; Packer, L. Redox regulation of NF-kappa B activation. Free Radic. Biol. Med. 1997, 22, 1115–1126. [Google Scholar] [CrossRef]
- Byun, M.-S.; Jeon, K.-I.; Choi, J.-W.; Shim, J.-Y.; Jue, D.-M. Dual effect of oxidative stress on NF-κB activation in HeLa cells. Exp. Mol. Med. 2002, 34, 332–339. [Google Scholar] [CrossRef]
- Manea, A.; Manea, S.; Gafencu, A.; Raicu, M. Regulation of NADPH oxidase subunit p22phox by NF-kB in human aortic smooth muscle cells. Arch. Physiol. Biochem. 2007, 113, 163–172. [Google Scholar] [CrossRef]
- Isenovic, E.R.; Kedees, M.H.; Tepavcevic, S.; Milosavljevic, T.; Koricanac, G.; Trpkovic, A.; Marche, P. Role of PI3K/AKT, cPLA2 and ERK1/2 signaling pathways in insulin regulation of vascular smooth muscle cells proliferation. Cardiovasc. Haematol. Disord.-Drug Targets (Former. Curr. Drug Targets-Cardiovasc. Hematol. Disord.) 2009, 9, 172–180. [Google Scholar] [CrossRef] [PubMed]
- Varma, S.; Lal, B.K.; Zheng, R.; Breslin, J.W.; Saito, S.; Pappas, P.J.; Hobson, R.W.; Durán, W.N. Hyperglycemia alters PI3k and Akt signaling and leads to endothelial cell proliferative dysfunction. Am. J. Physiol.-Heart Circ. Physiol. 2005, 289, H1744–H1751. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goncharova, E.A.; Ammit, A.J.; Irani, C.; Carroll, R.G.; Eszterhas, A.J.; Panettieri, R.A.; Krymskaya, V.P. PI3K is required for proliferation and migration of human pulmonary vascular smooth muscle cells. Am. J. Physiol. Lung Cell. Mol. Physiol. 2002, 283, L354–L363. [Google Scholar] [CrossRef] [Green Version]
- Leslie, N.R.; Downes, C.P. PTEN: The down side of PI 3-kinase signalling. Cell. Signal. 2002, 14, 285–295. [Google Scholar] [CrossRef]
- Xu, B.C.; Long, H.B.; Luo, K.Q. Tert-butylhydroquinone lowers blood pressure in AngII-induced hypertension in mice via proteasome-PTEN-Akt-eNOS pathway. Sci. Rep. 2016, 6, 29589. [Google Scholar] [CrossRef] [Green Version]
- Findley, C.M.; Cudmore, M.J.; Ahmed, A.; Kontos, C.D. VEGF Induces Tie2 Shedding via a Phosphoinositide 3-Kinase/Akt–Dependent Pathway to Modulate Tie2 Signaling. Arterioscler. Thromb. Vasc. Biol. 2007, 27, 2619–2626. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ewart, M.-A.; Kennedy, S. AMPK and vasculoprotection. Pharmacol. Ther. 2011, 131, 242–253. [Google Scholar] [CrossRef]
- Rodríguez, C.; Muñoz, M.; Contreras, C.; Prieto, D. AMPK, metabolism, and vascular function. FEBS J. 2021, 288, 3746–3771. [Google Scholar] [CrossRef]
- Lewis, T.S.; Shapiro, P.S.; Ahn, N.G. Signal Transduction through MAP Kinase Cascades. In Advances in Cancer Research; Vande Woude, G.F., Klein, G., Eds.; Academic Press: Cambridge, MA, USA, 1998; Volume 74, pp. 49–139. [Google Scholar]
- Garrington, T.P.; Johnson, G.L. Organization and regulation of mitogen-activated protein kinase signaling pathways. Curr. Opin. Cell Biol. 1999, 11, 211–218. [Google Scholar] [CrossRef]
- Long, Y.-M.; Yang, X.-Z.; Yang, Q.-Q.; Clermont, A.C.; Yin, Y.-G.; Liu, G.-L.; Hu, L.-G.; Liu, Q.; Zhou, Q.-F.; Liu, Q.S.; et al. PM2.5 induces vascular permeability increase through activating MAPK/ERK signaling pathway and ROS generation. J. Hazard. Mater. 2020, 386, 121659. [Google Scholar] [CrossRef]
- Grote, K.; Luchtefeld, M.; Schieffer, B. JANUS under stress—Role of JAK/STAT signaling pathway in vascular diseases. Vasc. Pharmacol. 2005, 43, 357–363. [Google Scholar] [CrossRef] [PubMed]
- Son, Y.; Cheong, Y.-K.; Kim, N.-H.; Chung, H.-T.; Kang, D.G.; Pae, H.-O. Mitogen-activated protein kinases and reactive oxygen species: How can ROS activate MAPK pathways? J. Signal Transduct. 2011, 2011, 792639. [Google Scholar] [CrossRef] [PubMed]
- Tobiume, K.; Matsuzawa, A.; Takahashi, T.; Nishitoh, H.; Morita, K.-i.; Takeda, K.; Minowa, O.; Miyazono, K.; Noda, T.; Ichijo, H. ASK1 is required for sustained activations of JNK/p38 MAP kinases and apoptosis. EMBO Rep. 2001, 2, 222–228. [Google Scholar] [CrossRef] [PubMed]
- Kamata, H.; Honda, S.-i.; Maeda, S.; Chang, L.; Hirata, H.; Karin, M. Reactive oxygen species promote TNFα-induced death and sustained JNK activation by inhibiting MAP kinase phosphatases. Cell 2005, 120, 649–661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, Y.; Murugan, D.D.; Khan, H.; Huang, Y.; Cheang, W.S. Roles and Therapeutic Implications of Endoplasmic Reticulum Stress and Oxidative Stress in Cardiovascular Diseases. Antioxidants 2021, 10, 1167. [Google Scholar] [CrossRef]
- Zeeshan, H.M.A.; Lee, G.H.; Kim, H.-R.; Chae, H.-J. Endoplasmic reticulum stress and associated ROS. Int. J. Mol. Sci. 2016, 17, 327. [Google Scholar] [CrossRef] [Green Version]
- Lenna, S.; Han, R.; Trojanowska, M. Endoplasmic reticulum stress and endothelial dysfunction. IUBMB Life 2014, 66, 530–537. [Google Scholar] [CrossRef] [Green Version]
- Cheang, W.S.; Tian, X.Y.; Wong, W.T.; Lau, C.W.; Lee, S.S.; Chen, Z.Y.; Yao, X.; Wang, N.; Huang, Y. Metformin protects endothelial function in diet-induced obese mice by inhibition of endoplasmic reticulum stress through 5′ adenosine monophosphate-activated protein kinase-peroxisome proliferator-activated receptor delta pathway. Arterioscler. Thromb. Vasc. Biol. 2014, 34, 830–836. [Google Scholar] [CrossRef] [Green Version]
- Dimmeler, S.; Zeiher, A.M. Reactive oxygen species and vascular cell apoptosis in response to angiotensin II and pro-atherosclerotic factors. Regul. Pept. 2000, 90, 19–25. [Google Scholar] [CrossRef]
- Reed, J.C. Double identity for proteins of the Bcl-2 family. Nature 1997, 387, 773–776. [Google Scholar] [CrossRef]
- Guarente, L. Mutant mice live longer. Nature 1999, 402, 243–245. [Google Scholar] [CrossRef] [PubMed]
- Miyashita, T.; Krajewski, S.; Krajewska, M.; Wang, H.G.; Lin, H.; Liebermann, D.A.; Hoffman, B.; Reed, J.C. Tumor suppressor p53 is a regulator of bcl-2 and bax gene expression in vitro and in vivo. Oncogene 1994, 9, 1799–1805. [Google Scholar] [PubMed]
- Griendling, K.K.; Harrison, D.G. Dual role of reactive oxygen species in vascular growth. Circ. Res. 1999, 85, 562–563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sundaresan, M.; Yu, Z.-X.; Ferrans, V.J.; Irani, K.; Finkel, T. Requirement for generation of H2O2 for platelet-derived growth factor signal transduction. Science 1995, 270, 296–299. [Google Scholar] [CrossRef] [Green Version]
- Finkel, T. Oxygen radicals and signaling. Curr. Opin. Cell Biol. 1998, 10, 248–253. [Google Scholar] [CrossRef]
- Lopes, C.M.C.; Lazzarini, J.R.; Soares Júnior, J.M.; Baracat, E.C. Phytotherapy: Yesterday, today, and forever? Rev. Da Assoc. Médica Bras. 2018, 64, 765–768. [Google Scholar] [CrossRef]
- Jiang, Z.; Gao, W.; Huang, L. Tanshinones, Critical Pharmacological Components in Salvia miltiorrhiza. Front. Pharmacol. 2019, 10, 202. [Google Scholar] [CrossRef]
- Zhou, J.; Zhang, L.; Zheng, B.; Zhang, L.; Qin, Y.; Zhang, X.; Yang, Z.; Nie, Z.; Yang, G.; Yu, J.; et al. Salvia miltiorrhiza bunge exerts anti-oxidative effects through inhibiting KLF10 expression in vascular smooth muscle cells exposed to high glucose. J. Ethnopharmacol. 2020, 262, 113208. [Google Scholar] [CrossRef]
- Hung, Y.-C.; Wang, P.-W.; Lin, T.-Y.; Yang, P.-M.; You, J.-S.; Pan, T.-L. Functional redox proteomics reveal that Salvia miltiorrhiza aqueous extract alleviates adriamycin-induced cardiomyopathy via inhibiting ROS-dependent apoptosis. Oxid. Med. Cell. Longev. 2020, 2020, 5136934. [Google Scholar] [CrossRef]
- Wu, Y.-T.; Xie, L.-P.; Hua, Y.; Xu, H.-L.; Chen, G.-H.; Han, X.; Tan, Z.-B.; Fan, H.-J.; Chen, H.-M.; Li, J.; et al. Tanshinone I Inhibits Oxidative Stress-Induced Cardiomyocyte Injury by Modulating Nrf2 Signaling. Front. Pharmacol. 2021, 12, 644116. [Google Scholar] [CrossRef]
- Zhang, X.; Zhou, C.; Miao, L.; Tan, Y.; Zhou, Y.; Cheong, M.S.; Huang, Y.; Wang, Y.; Yu, H.; Cheang, W.S. Panax Notoginseng Protects against Diabetes-Associated Endothelial Dysfunction: Comparison between Ethanolic Extract and Total Saponin. Oxid. Med. Cell. Longev. 2021, 2021, 4722797. [Google Scholar] [CrossRef] [PubMed]
- Bo, Y.; Jian, Z.; Zhi-Jun, S.; Quing, W.; Hua, Z.; Chuan-Wei, L.; Yu-Kang, C. Panax notoginseng saponins alleviates advanced glycation end product-induced apoptosis by upregulating SIRT1 and antioxidant expression levels in HUVECs. Exp. Ther. Med. 2020, 20, 99. [Google Scholar] [CrossRef] [PubMed]
- He, B.; Chen, D.; Zhang, X.; Yang, R.; Yang, Y.; Chen, P.; Shen, Z. Oxidative Stress and Ginsenosides: An Update on the Molecular Mechanisms. Oxid. Med. Cell. Longev. 2022, 2022, 9299574. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Abid, S.; Ahn, J.C.; Mathiyalagan, R.; Kim, Y.-J.; Yang, D.-C.; Wang, Y. Characteristics of Panax ginseng cultivars in Korea and China. Molecules 2020, 25, 2635. [Google Scholar] [CrossRef]
- Lu, S.; Luo, Y.; Zhou, P.; Yang, K.; Sun, G.; Sun, X. Ginsenoside compound K protects human umbilical vein endothelial cells against oxidized low-density lipoprotein-induced injury via inhibition of nuclear factor-κB, p38, and JNK MAPK pathways. J. Ginseng Res. 2019, 43, 95–104. [Google Scholar] [CrossRef]
- Carota, G.; Raffaele, M.; Sorrenti, V.; Salerno, L.; Pittalà, V.; Intagliata, S. Ginseng and heme oxygenase-1: The link between an old herb and a new protective system. Fitoterapia 2019, 139, 104370. [Google Scholar] [CrossRef]
- Xu, H.; Jiang, Y.; Yu, K.; Zhang, X.; Shi, Y. Effect of Ginsenoside Rh1 on Proliferation, Apoptosis, and Oxidative Stress in Vascular Endothelial Cells by Regulation of the Nuclear Erythroid 2-related Factor-2/Heme Oxygenase-1 Signaling Pathway. J. Cardiovasc. Pharmacol. 2022, 79, 335–341. [Google Scholar] [CrossRef]
- Lee, H.-J.; Kim, B.-M.; Lee, S.H.; Sohn, J.-T.; Choi, J.W.; Cho, C.-W.; Hong, H.-D.; Rhee, Y.K.; Kim, H.-J. Ginseng-Induced Changes to Blood Vessel Dilation and the Metabolome of Rats. Nutrients 2020, 12, 2238. [Google Scholar] [CrossRef]
- Fan, X.; Wang, E.; He, J.; Zhang, L.; Zeng, X.; Gui, Y.; Sun, Q.; Song, Y.; Yuan, H. Ligustrazine Protects Homocysteine-Induced Apoptosis in Human Umbilical Vein Endothelial Cells by Modulating Mitochondrial Dysfunction. J. Cardiovasc. Transl. Res. 2019, 12, 591–599. [Google Scholar] [CrossRef]
- Ding, Y.; Du, J.; Cui, F.; Chen, L.; Li, K. The protective effect of ligustrazine on rats with cerebral ischemia–reperfusion injury via activating PI3K/Akt pathway. Hum. Exp. Toxicol. 2019, 38, 1168–1177. [Google Scholar] [CrossRef]
- Ren, S.; Zhang, H.; Mu, Y.; Sun, M.; Liu, P. Pharmacological effects of Astragaloside IV: A literature review. J. Tradit. Chin. Med. 2013, 33, 413–416. [Google Scholar] [CrossRef]
- Tan, Y.-Q.; Chen, H.-W.; Li, J. Astragaloside IV: An Effective Drug for the Treatment of Cardiovascular Diseases. Drug Des. Devel. Ther. 2020, 14, 3731–3746. [Google Scholar] [CrossRef] [PubMed]
- Leng, B.; Li, C.; Sun, Y.; Zhao, K.; Zhang, L.; Lu, M.-L.; Wang, H.-X. Protective effect of astragaloside IV on high glucose-induced endothelial dysfunction via inhibition of P2X7R dependent P38 MAPK signaling pathway. Oxid. Med. Cell. Longev. 2020, 2020, 5070415. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.-P.; Cui, H.-J.; Yang, A.L.; Luo, J.-K.; Tang, T. Astragaloside IV Improves Vasodilatation Function by Regulating the PI3K/Akt/eNOS Signaling Pathway in Rat Aorta Endothelial Cells. J. Vasc. Res. 2018, 55, 169–176. [Google Scholar] [CrossRef]
- Xu, C.; Tang, F.; Lu, M.; Yang, J.; Han, R.; Mei, M.; Hu, J.; Zhou, M.; Wang, H. Astragaloside IV improves the isoproterenol-induced vascular dysfunction via attenuating eNOS uncoupling-mediated oxidative stress and inhibiting ROS-NF-κB pathways. Int. Immunopharmacol. 2016, 33, 119–127. [Google Scholar] [CrossRef]
- Mani, V.; Lee, S.-K.; Yeo, Y.; Hahn, B.-S. A Metabolic Perspective and Opportunities in Pharmacologically Important Safflower. Metabolites 2020, 10, 253. [Google Scholar] [CrossRef]
- Lee, Y.J.; Lee, Y.P.; Seo, C.S.; Choi, E.S.; Han, B.H.; Yoon, J.J.; Jang, S.H.; Jeong, C.G.; Mun, Y.J.; Kang, D.G.; et al. The Modulation of Nrf-2/HO-1 Signaling Axis by Carthamus tinctorius L. Alleviates Vascular Inflammation in Human Umbilical Vein Endothelial Cells. Plants 2021, 10, 2795. [Google Scholar] [CrossRef]
- Bunbupha, S.; Wunpathe, C.; Maneesai, P.; Berkban, T.; Kukongviriyapan, U.; Kukongviriyapan, V.; Prachaney, P.; Pakdeechote, P. Carthamus tinctorius L. extract improves hemodynamic and vascular alterations in a rat model of renovascular hypertension through Ang II-AT1R-NADPH oxidase pathway. Ann. Anat.-Anat. Anz. 2018, 216, 82–89. [Google Scholar] [CrossRef]
- Liu, X.-G.; Lu, X.; Gao, W.; Li, P.; Yang, H. Structure, synthesis, biosynthesis, and activity of the characteristic compounds from Ginkgo biloba L. Nat. Prod. Rep. 2022, 39, 474–511. [Google Scholar] [CrossRef]
- Feng, Z.; Yang, X.; Zhang, L.; Ansari, I.A.; Khan, M.S.; Han, S.; Feng, Y. Ginkgolide B ameliorates oxidized low-density lipoprotein-induced endothelial dysfunction via modulating Lectin-like ox-LDL-receptor-1 and NADPH oxidase 4 expression and inflammatory cascades. Phytother. Res. 2018, 32, 2417–2427. [Google Scholar] [CrossRef]
- Wang, G.; Liu, Z.; Li, M.; Li, Y.; Alvi, S.S.; Ansari, I.A.; Khan, M.S. Ginkgolide B Mediated Alleviation of Inflammatory Cascades and Altered Lipid Metabolism in HUVECs via Targeting PCSK-9 Expression and Functionality. BioMed Res. Int. 2019, 2019, 7284767. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.-C.; Chen, J.-S.; Wang, C.-H.; Huang, P.-H.; Lin, F.-Y.; Lin, L.-Y.; Lin, S.-J.; Chen, J.-W. Activation of heme oxygenase-1 by Ginkgo biloba extract differentially modulates endothelial and smooth muscle-like progenitor cells for vascular repair. Sci. Rep. 2019, 9, 17316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, J.; Luo, Y.; Deng, D.; Su, S.; Li, S.; Xiang, L.; Hu, Y.; Wang, P.; Meng, X. Coptisine from Coptis chinensis exerts diverse beneficial properties: A concise review. J. Cell. Mol. Med. 2019, 23, 7946–7960. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, L.-l.; Jia, W.-h.; Zhang, L.; Xu, C.-y.; Chen, X.; Yin, L.; Wang, N.-q.; Fang, L.-h.; Qiang, G.-f.; Yang, X.-y.; et al. Glucose consumption assay discovers coptisine with beneficial effect on diabetic mice. Eur. J. Pharmacol. 2019, 859, 172523. [Google Scholar] [CrossRef] [PubMed]
- Feng, M.; Kong, S.-Z.; Wang, Z.-X.; He, K.; Zou, Z.-Y.; Hu, Y.-R.; Ma, H.; Li, X.-G.; Ye, X.-L. The protective effect of coptisine on experimental atherosclerosis ApoE−/− mice is mediated by MAPK/NF-κB-dependent pathway. Biomed. Pharmacother. 2017, 93, 721–729. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhou, C.; Zhang, X.; Vong, C.T.; Wang, Y.; Cheang, W.S. Coptisine Attenuates Diabetes—Associated Endothelial Dysfunction through Inhibition of Endoplasmic Reticulum Stress and Oxidative Stress. Molecules 2021, 26, 4210. [Google Scholar] [CrossRef]
- Seong, H.R.; Wang, C.; Irfan, M.; Kim, Y.E.; Jung, G.; Park, S.K.; Kim, T.M.; Choi, E.-K.; Rhee, M.H.; Kim, Y.-B. DK-MGAR101, an extract of adventitious roots of mountain ginseng, improves blood circulation by inhibiting endothelial cell injury, platelet aggregation, and thrombus formation. J. Ginseng Res. 2022, in press. [Google Scholar] [CrossRef]
- Chen, M.; Zou, W.; Chen, M.; Cao, L.; Ding, J.; Xiao, W.; Hu, G. Ginkgolide K promotes angiogenesis in a middle cerebral artery occlusion mouse model via activating JAK2/STAT3 pathway. Eur. J. Pharmacol. 2018, 833, 221–229. [Google Scholar] [CrossRef]
- Kim, G.D. Sirt1-Mediated Anti-Aging Effects of Houttuynia cordata Extract in a High Glucose-Induced Endothelial Cell-Aging Model. Prev. Nutr. Food Sci. 2020, 25, 108–112. [Google Scholar] [CrossRef]
- Liu, X.; Cao, K.; Lv, W.; Liu, J.; Gao, J.; Wang, Y.; Qin, C.; Liu, J.; Zang, W.; Liu, J. Aqueous extract of Houttuynia cordata ameliorates aortic endothelial injury during hyperlipidemia via FoxO1 and p38 MAPK pathway. J. Funct. Foods 2019, 62, 103510. [Google Scholar] [CrossRef]
- Kim, G.D. SIRT1-Mediated Protective Effect of Aralia elata (Miq.) Seem against High-Glucose-Induced Senescence in Human Umbilical Vein Endothelial Cells. Nutrients 2019, 11, 2625. [Google Scholar] [CrossRef] [Green Version]
- Takano, K.; Tatebe, J.; Washizawa, N.; Morita, T. Curcumin Inhibits Age-Related Vascular Changes in Aged Mice Fed a High-Fat Diet. Nutrients 2018, 10, 1476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, M.; Yang, S.; Wang, S.; Cao, Y.; Zhao, R.; Li, X.; Xing, Y.; Liu, L. Effect of Berberine on Atherosclerosis and Gut Microbiota Modulation and Their Correlation in High-Fat Diet-Fed ApoE−/− Mice. Front. Pharmacol. 2020, 11, 223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Purnomo, F.A.; Karlowee, V.; Wijayahadi, N.; Setiawan, A.A. The Effect of Black Garlic (Allium sativum Linn) on Cardiac and Aortic Histopathology in Experimental Studies in Obesity Rats. J. Biomed. Transl. Res. 2021, 7, 62–68. [Google Scholar]
- Liu, S.; He, Y.; Shi, J.; Liu, L.; Ma, H.; He, L.; Guo, Y. Allicin Attenuates Myocardial Ischemia Reperfusion Injury in Rats by Inhibition of Inflammation and Oxidative Stress. Transplant. Proc. 2019, 51, 2060–2065. [Google Scholar] [CrossRef] [PubMed]
- Rachmawati, N.A.; Wasita, B.; Kartikasari, L.R. Basil Leaves (Ocimum sanctum linn.) extract decreases total cholesterol levels in hypercholesterolemia Sprague Dawley rats model. IOP Conf. Ser. Mater. Sci. Eng. 2019, 546, 062020. [Google Scholar] [CrossRef]
- Rachmawati, E.; Muhammad, R.F. The ethanolic extract of holy basil leaves (Ocimum sanctum L.) attenuates atherosclerosis in high fat diet fed rabbit. AIP Conf. Proc. 2021, 2353, 030113. [Google Scholar]
- Festa, J.; Da Boit, M.; Hussain, A.; Singh, H. Potential Benefits of Berry Anthocyanins on Vascular Function. Mol. Nutr. Food Res. 2021, 65, e2100170. [Google Scholar] [CrossRef]
- Luís, Â.; Domingues, F.; Pereira, L. Association between berries intake and cardiovascular diseases risk factors: A systematic review with meta-analysis and trial sequential analysis of randomized controlled trials. Food Funct. 2018, 9, 740–757. [Google Scholar] [CrossRef]
- Huang, W.; Hutabarat, R.P.; Chai, Z.; Zheng, T.; Zhang, W.; Li, D. Antioxidant Blueberry Anthocyanins Induce Vasodilation via PI3K/Akt Signaling Pathway in High-Glucose-Induced Human Umbilical Vein Endothelial Cells. Int. J. Mol. Sci. 2020, 21, 1575. [Google Scholar] [CrossRef] [Green Version]
- Aboonabi, A.; Singh, I.; Rose’ Meyer, R. Cytoprotective effects of berry anthocyanins against induced oxidative stress and inflammation in primary human diabetic aortic endothelial cells. Chem.-Biol. Interact. 2020, 317, 108940. [Google Scholar] [CrossRef]
- Waldbauer, K.; Seiringer, G.; Sykora, C.; Dirsch, V.M.; Zehl, M.; Kopp, B. Evaluation of Apricot, Bilberry, and Elderberry Pomace Constituents and Their Potential To Enhance the Endothelial Nitric Oxide Synthase (eNOS) Activity. ACS Omega 2018, 3, 10545–10553. [Google Scholar] [CrossRef] [PubMed]
- du Preez, R.; Wanyonyi, S.; Mouatt, P.; Panchal, S.K.; Brown, L. Saskatoon Berry Amelanchier alnifolia Regulates Glucose Metabolism and Improves Cardiovascular and Liver Signs of Diet-Induced Metabolic Syndrome in Rats. Nutrients 2020, 12, 931. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akbar, S. Momordica charantia L. (Cucurbitaceae). In Handbook of 200 Medicinal Plants: A Comprehensive Review of Their Traditional Medical Uses and Scientific Justifications; Akbar, S., Ed.; Springer International Publishing: Cham, Switzerland, 2020; pp. 1195–1219. [Google Scholar]
- Thomford, K.P.; Thomford, A.K.; Yorke, J.; Yeboah, R.; Appiah, A.A. Momordica charantia L. for hyperlipidaemia: A randomised controlled assessment of the Ghanaian herbal medicinal product MCP-1. J. Herb. Med. 2021, 28, 100453. [Google Scholar] [CrossRef]
- Salehi, B.; Quispe, C.; Sharifi-Rad, J.; Giri, L.; Suyal, R.; Jugran, A.K.; Zucca, P.; Rescigno, A.; Peddio, S.; Bobiş, O.; et al. Antioxidant potential of family Cucurbitaceae with special emphasis on Cucurbita genus: A key to alleviate oxidative stress-mediated disorders. Phytother. Res. 2021, 35, 3533–3557. [Google Scholar] [CrossRef]
- Yang, D.K.; Kim, S.-J. Cucurbitacin I Protects H9c2 Cardiomyoblasts against H2O2-Induced Oxidative Stress via Protection of Mitochondrial Dysfunction. Oxid. Med. Cell. Longev. 2018, 2018, 3016382. [Google Scholar] [CrossRef] [Green Version]
- Innih, S.O.; Eze, I.G.; Omage, K. Evaluation of the haematinic, antioxidant and anti-atherosclerotic potential of Momordica charantia in cholesterol-fed experimental rats. Toxicol. Rep. 2022, 9, 611–618. [Google Scholar] [CrossRef]
- Chenni, A.; Cherif, F.Z.H.; Chenni, K.; Elius, E.E.; Pucci, L.; Yahia, D.A. Effects of Pumpkin (Cucurbita pepo L.) Seed Protein on Blood Pressure, Plasma Lipids, Leptin, Adiponectin, and Oxidative Stress in Rats with Fructose-Induced Metabolic Syndrome. Prev. Nutr. Food Sci. 2022, 27, 78–88. [Google Scholar] [CrossRef]
- Trejo-Moreno, C.; Méndez-Martínez, M.; Zamilpa, A.; Jiménez-Ferrer, E.; Perez-Garcia, M.D.; Medina-Campos, O.N.; Pedraza-Chaverri, J.; Santana, M.A.; Esquivel-Guadarrama, F.R.; Castillo, A.; et al. Cucumis sativus Aqueous Fraction Inhibits Angiotensin II-Induced Inflammation and Oxidative Stress In Vitro. Nutrients 2018, 10, 276. [Google Scholar] [CrossRef] [Green Version]
- Connolly, E.L.; Bondonno, C.P.; Sim, M.; Radavelli-Bagatini, S.; Croft, K.D.; Boyce, M.C.; James, A.P.; Clark, K.; Anokye, R.; Bondonno, N.P.; et al. A randomised controlled crossover trial investigating the short-term effects of different types of vegetables on vascular and metabolic function in middle-aged and older adults with mildly elevated blood pressure: The VEgetableS for vaScular hEaLth (VESSEL) study protocol. Nutr. J. 2020, 19, 41. [Google Scholar] [CrossRef]
- Fuentes, F.; Paredes-Gonzalez, X.; Kong, A.-N.T. Dietary Glucosinolates Sulforaphane, Phenethyl Isothiocyanate, Indole-3-Carbinol/3,3′-Diindolylmethane: Antioxidative Stress/Inflammation, Nrf2, Epigenetics/Epigenomics and In Vivo Cancer Chemopreventive Efficacy. Curr. Pharmacol. Rep. 2015, 1, 179–196. [Google Scholar] [CrossRef] [Green Version]
- Esteve, M. Mechanisms Underlying Biological Effects of Cruciferous Glucosinolate-Derived Isothiocyanates/Indoles: A Focus on Metabolic Syndrome. Front. Nutr. 2020, 7, 111. [Google Scholar] [CrossRef] [PubMed]
- Prado, N.J.; Ramirez, D.; Mazzei, L.; Parra, M.; Casarotto, M.; Calvo, J.P.; Cuello carrión, D.; Ponce Zumino, A.Z.; Diez, E.R.; Camargo, A.; et al. Anti-inflammatory, antioxidant, antihypertensive, and antiarrhythmic effect of indole-3-carbinol, a phytochemical derived from cruciferous vegetables. Heliyon 2022, 8, e08989. [Google Scholar] [CrossRef]
- Ampofo, E.; Schmitt, B.M.; Menger, M.D.; Laschke, M.W. Targeting the Microcirculation by Indole-3-carbinol and Its Main Derivate 3,3,′-diindolylmethane: Effects on Angiogenesis, Thrombosis and Inflammation. Mini Rev. Med. Chem. 2018, 18, 962–968. [Google Scholar] [CrossRef] [PubMed]
- Lobo, M.; Hounsome, N.; Hounsome, B. Biochemistry of Vegetables: Secondary Metabolites in Vegetables—Terpenoids, Phenolics, Alkaloids, and Sulfur-Containing Compounds. In Handbook of Vegetables and Vegetable Processing; John Wiley & Sons: Hoboken, NJ, USA, 2018; pp. 47–82. [Google Scholar]
- Elkhalifa, A.E.O.; Alshammari, E.; Adnan, M.; Alcantara, J.C.; Awadelkareem, A.M.; Eltoum, N.E.; Mehmood, K.; Panda, B.P.; Ashraf, S.A. Okra (Abelmoschus esculentus) as a Potential Dietary Medicine with Nutraceutical Importance for Sustainable Health Applications. Molecules 2021, 26, 696. [Google Scholar] [CrossRef] [PubMed]
- Nikpayam, O.; Safaei, E.; Bahreini, N.; Saghafi-Asl, M. The effects of okra (Abelmoschus esculentus L.) products on glycemic control and lipid profile: A comprehensive systematic review. J. Funct. Foods 2021, 87, 104795. [Google Scholar] [CrossRef]
- Ong, E.S.; Oh, C.L.Y.; Tan, J.C.W.; Foo, S.Y.; Leo, C.H. Pressurized Hot Water Extraction of Okra Seeds Reveals Antioxidant, Antidiabetic and Vasoprotective Activities. Plants 2021, 10, 1645. [Google Scholar] [CrossRef] [PubMed]
- Kone Berethe, R. Cardiovascular Benefits of Okra in Low Density Lipoprotein Knockout Mice. Master’s Thesis, The University of Manitoba, Winnipeg, MB, Canada, 2022. [Google Scholar]
- Mozos, I.; Stoian, D.; Caraba, A.; Malainer, C.; Horbańczuk, J.O.; Atanasov, A.G. Lycopene and Vascular Health. Front. Pharmacol. 2018, 9, 521. [Google Scholar] [CrossRef]
- Liu, H.; Liu, J.; Liu, Z.; Wang, Q.; Liu, J.; Feng, D.; Zou, J. Lycopene Reduces Cholesterol Absorption and Prevents Atherosclerosis in ApoE−/− Mice by Downregulating HNF-1α and NPC1L1 Expression. J. Agric. Food Chem. 2021, 69, 10114–10120. [Google Scholar] [CrossRef]
- Lange, K.W. Tea in cardiovascular health and disease: A critical appraisal of the evidence. Food Sci. Human Wellness 2022, 11, 445–454. [Google Scholar] [CrossRef]
- Mohsenzadeh, M.S.; Razavi, B.M.; Imenshahidi, M.; Mohajeri, S.A.; Rameshrad, M.; Hosseinzadeh, H. Evaluation of green tea extract and epigallocatechin gallate effects on bisphenol A-induced vascular toxicity in isolated rat aorta and cytotoxicity in human umbilical vein endothelial cells. Phytother. Res. 2021, 35, 996–1009. [Google Scholar] [CrossRef]
- Rivera, K.; Salas-Pérez, F.; Echeverría, G.; Urquiaga, I.; Dicenta, S.; Pérez, D.; de la Cerda, P.; González, L.; Andia, M.E.; Uribe, S.; et al. Red Wine Grape Pomace Attenuates Atherosclerosis and Myocardial Damage and Increases Survival in Association with Improved Plasma Antioxidant Activity in a Murine Model of Lethal Ischemic Heart Disease. Nutrients 2019, 11, 2135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheang, W.S.; Wong, W.T.; Wang, L.; Cheng, C.K.; Lau, C.W.; Ma, R.C.W.; Xu, A.; Wang, N.; Huang, Y.; Tian, X.Y. Resveratrol ameliorates endothelial dysfunction in diabetic and obese mice through sirtuin 1 and peroxisome proliferator-activated receptor δ. Pharmacol. Res. 2019, 139, 384–394. [Google Scholar] [CrossRef]
- Zhou, Y.; Khan, H.; Xiao, J.; Cheang, W.S. Effects of Arachidonic Acid Metabolites on Cardiovascular Health and Disease. Int. J. Mol. Sci. 2021, 22, 12029. [Google Scholar] [CrossRef] [PubMed]
- Sherratt, S.C.R.; Dawoud, H.; Bhatt, D.L.; Malinski, T.; Mason, R.P. Omega-3 and omega-6 fatty acids have distinct effects on endothelial fatty acid content and nitric oxide bioavailability. Prostaglandins Leukot. Essent. Fat. Acids 2021, 173, 102337. [Google Scholar] [CrossRef] [PubMed]
- Ponnampalam, E.N.; Sinclair, A.J.; Holman, B.W.B. The Sources, Synthesis and Biological Actions of Omega-3 and Omega-6 Fatty Acids in Red Meat: An Overview. Foods 2021, 10, 1358. [Google Scholar] [CrossRef]
- Holen, E.; Araujo, P.; Sissener, N.H.; Rosenlund, G.; Waagbø, R. A comparative study: Difference in omega-6/omega-3 balance and saturated fat in diets for Atlantic salmon (Salmo salar) affect immune-, fat metabolism-, oxidative and apoptotic-gene expression, and eicosanoid secretion in head kidney leukocytes. Fish Shellfish Immunol. 2018, 72, 57–68. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Zhang, Y.-N. Compound Danshen dripping pills in treating with coronary heart disease: A protocol for systematic review and meta-analysis. Medicine 2022, 101, e28927. [Google Scholar] [CrossRef]
- Li, C.; Li, Q.; Xu, J.; Wu, W.; Wu, Y.; Xie, J.; Yang, X. The Efficacy and Safety of Compound Danshen Dripping Pill Combined with Percutaneous Coronary Intervention for Coronary Heart Disease. Evid. Based Complement. Alternat. Med. 2020, 2020, 5067137. [Google Scholar] [CrossRef]
- Orgah, J.O.; He, S.; Wang, Y.; Jiang, M.; Wang, Y.; Orgah, E.A.; Duan, Y.; Zhao, B.; Zhang, B.; Han, J.; et al. Pharmacological potential of the combination of Salvia miltiorrhiza (Danshen) and Carthamus tinctorius (Honghua) for diabetes mellitus and its cardiovascular complications. Pharmacol. Res. 2020, 153, 104654. [Google Scholar] [CrossRef]
- Zhang, G.-x.; Zhang, Y.-y.; Zhang, X.-x.; Wang, P.-q.; Liu, J.; Liu, Q.; Wang, Z. Different network pharmacology mechanisms of Danshen-based Fangjis in the treatment of stable angina. Acta Pharmacol. Sin. 2018, 39, 952–960. [Google Scholar] [CrossRef]
- Qian, S.; Wang, S.; Fan, P.; Huo, D.; Dai, L.; Qian, Q. Effect of Salvia miltiorrhiza hydrophilic extract on the endothelial biomarkers in diabetic patients with chronic artery disease. Phytother. Res. 2012, 26, 1575–1578. [Google Scholar] [CrossRef] [PubMed]
- Qian, Q.; Qian, S.; Fan, P.; Huo, D.; Wang, S. Effect of Salvia miltiorrhiza hydrophilic extract on antioxidant enzymes in diabetic patients with chronic heart disease: A randomized controlled trial. Phytother. Res. 2012, 26, 60–66. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Wang, W.; Wang, B.; Zhang, T.; Cui, X.; Pu, Y.; Li, N. Analytical methods and biological activities of Panax notoginseng saponins recent trends. J. Ethnopharmacol. 2019, 236, 443–465. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Shao, Q.; Ge, Z.; Ai, N.; Zhao, X.; Fan, X. A Bioactive Chemical Markers Based Strategy for Quality Assessment of Botanical Drugs: Xuesaitong Injection as a Case Study. Sci. Rep. 2017, 7, 2410. [Google Scholar] [CrossRef] [Green Version]
- Xu, L.; Hui, X.; Du, P.; Du, L. Meta-analysis of the curative effect of panax notoginseng saponins in the treatment of diabetic peripheral neuropathy. In Proceedings of the 2021 11th International Conference on Information Technology in Medicine and Education (ITME), Wuyishan, China, 19–21 November 2021; pp. 292–297. [Google Scholar]
- Duan, L.; Xiong, X.; Hu, J.; Liu, Y.; Wang, J. Efficacy and safety of oral Panax notoginseng saponins for unstable angina patients: A meta-analysis and systematic review. Phytomedicine 2018, 47, 23–33. [Google Scholar] [CrossRef]
- Song, H.; Wang, P.; Liu, J.; Wang, C. Panax notoginseng preparations for unstable angina pectoris: A systematic review and meta-analysis. Phytother. Res. 2017, 31, 1162–1172. [Google Scholar] [CrossRef]
- Fava, S.; Azzopardi, J.; Agius-Muscat, H. Outcome of unstable angina in patients with diabetes mellitus. Diabet. Med. 1997, 14, 209–213. [Google Scholar] [CrossRef]
- Zhang, H.; Hu, C.; Xue, J.; Jin, D.; Tian, L.; Zhao, D.; Li, X.; Qi, W. Ginseng in vascular dysfunction: A review of therapeutic potentials and molecular mechanisms. Phytother. Res. 2022, 36, 857–872. [Google Scholar] [CrossRef]
- Jovanovski, E.; Lea Duvnjak, S.; Komishon, A.; Au-Yeung, F.; Zurbau, A.; Jenkins, A.L.; Sung, M.-K.; Josse, R.; Vuksan, V. Vascular effects of combined enriched Korean Red ginseng (Panax Ginseng) and American ginseng (Panax Quinquefolius) administration in individuals with hypertension and type 2 diabetes: A randomized controlled trial. Complement. Ther. Med. 2020, 49, 102338. [Google Scholar] [CrossRef]
- Chen, A.D.; Wang, C.-L.; Qin, Y.; Tian, L.; Chen, L.-B.; Yuan, X.-M.; Ma, L.-X.; Wang, Y.-F.; Sun, J.-R.; Wang, H.-S.; et al. The effect of Danshen extract on lipoprotein-associated phospholipase A2 levels in patients with stable angina pectoris: Study protocol for a randomized controlled trial—The DOLPHIN study. Trials 2017, 18, 606. [Google Scholar] [CrossRef] [Green Version]
Decreased Antioxidant Enzymes | Type of ROS and RNS Increased |
---|---|
Superoxide dismutases (SODs) | Superoxide ion (O2•−) Peroxynitrite (ONOO−) |
Catalase (CAT) | Hydrogen peroxide H2O2 Hydroxyl radical OH•− |
Glutathione peroxidase (GPx) | |
Glutathione-S-transferase (GST) | |
Myeloperoxidase (MPO) |
Medical Plant | Active Ingredients/Extract | In Vivo/In Vitro Model | Molecular Mechanism | References |
---|---|---|---|---|
Salvia miltiorrhiza Bunge | Salvia miltiorrhiza Bunge extract | HG-treated VSMCs and HFD-induced diabetic mice | KLF10 ↓ HO-1 ↑ | [134] |
ADR-treated H9c2 cell and Wistar rats | Nrf2/HO-1 ERK/p53/Bcl-xL/caspase-3 ROS ↓ | [135] | ||
Tanshinone I | Nrf2−/− mice | Nrf2/MAPK Signaling | [136] | |
Panax notoginseng | Panax notoginseng extract and PNS | HFD- induced diabetic mice ex vivo mice aorta HG-treated HUVECs | AMPK/eNOS pathway restore relaxations | [137] |
PNS | AGE-induced HUVECs | SIRT1 ↑ SOD levels ↓ | [138] | |
20(S)-Rg3 and 20I-Rg3 | H9C2 cells | Keap-1/Nrf2/HO-1 | [139] | |
Panax ginseng C.A. Mey | Ginsenoside compound K | ox-LDL-induced HUVECs | NF-κB/p38/JNK pathways | [141] |
Ginsenoside Rh1 | ox-LDL-induced VEC | Nrf2/HO-1 pathway | [142,143] | |
Ginseng extract | Healthy rats | Blood vessel dilation | [144] | |
Mountain ginseng Roots extract (including Rb1, Rg1, Rg3, Rg5, and Rk1) | Sprague-Dawley rats and H2O2 -RAECs | Survival rate of RAECs ↑ thrombus formation ↓ | [163] | |
Ligusticum chuanxiong hort | Ligustrazine | Hcy-induced HUVECs | Mitochondrial dysfunction ↓ | [145] |
OGD HAECs MI/R injury in rats | PI3K/Akt/eNOS NO release ↑ | [146] | ||
Astragalus membranaceus | Astragaloside IV | HG-treated RAECs STZ SD rats | P2X7R, p-p38 MAPK ↓ eNOS and NO ↑ | [149] |
RAEC | AMPK/eNOS pathway eNOS mRNA expression | [150] | ||
Carhamus tinctorius L. | The ethanol extract of flowers | TNF α-stimulated HUVECs | Nrf2/HO-1/CO signaling ROS ↓ | [153] |
2K-1C hypertensive rats | Ang II-AT1R-NADPH ↓ O2− ↓ gp91phox ↓ | [154] | ||
Ginkgo biloba L. | Ginkgolide B | LDL-induced HUVECs | NOX-4, LOX-1, MCP-1, ICAM-1, and VCAM-1 ↓ | [156,157] |
Ginkgolide K | tMCAO mouse model | JAK2/STAT3 HIF-1α/VEGF | [164] | |
Ginkgo biloba extract | EPCs | PI3K/Akt/eNOS signaling | [158] | |
Coptis chinensis Franch | Coptisine | HFD-induced mice ex vivo mice aorta | AMPK signaling phosphorylation of eNOs ↑ | [162] |
Houttuynia cordata | Houttuynia cordata extract | HG-treated ECs | Sirt1/eNOS NO ↑ | [165] |
Hyperlipidemia mice and HAEC cultured with PA | FoxO1/p38 MAPK pathway ROS ↓ | [166] | ||
Ginkgo biloba | Ginkgolide K | tMCAO mouse model | JAK2/STAT3 HIF-1α/VEGF | [156] |
Aralia Elata | Aralia Elata extract | HG-treated HUVECs | SIRT/AMPK AKT/eNOS | [167] |
Curcuma longa Linn | Curcumin | HFD-induced mice | HO-1 Enzyme Activity ↑ ROS ↓ sirt1 ↑ | [168] |
Coptis chinensis Franch and Cortex phellodendri | Berberine | ApoE−/− mice | Atherosclerotic plaque area ↓ TC, TG, LDL-C, APOB100, VLDL-C ↓ | [169] |
Allium sativum Linn | Allium sativum Linn | Obesity Rats | Aortic wall thickness ↓ | [170] |
Allicin | MI/R injury in rats | The activity of SOD, CAT, and GPx ↑ MDA ↓ p38 MAPK signaling pathway | [171] | |
Ocimum sanctum Linn | Ocimum sanctum Linn extract | Sprague-Dawley rats | Cholesterol levels ↓ | [172] |
HFD-induced rabbit | Fatty streaks lesion in the artery wall ↓ | [173] |
Food and Nutrients | Active Ingredients/Extract | In Vivo/In Vitro Model | Molecular Mechanism | References | |
---|---|---|---|---|---|
Berries (polyphenols, flavonoids, vitamins, fiber and minerals) | Blueberry anthocyanins | HG-induced HUVECs | PI3K/Akt/eNOs/PPARγ signaling pathway ACE, XO-1 and LDL ↓ | [176] | |
Berry anthocyanins | D-HAEC | IkB-α and caspase-1 activation | [177] | ||
Elderberry extract (20beta-hydroxyursolic acid) | EA.hy926 | eNOS activity ↑ | [178] | ||
Saskatoon Berry extract | HFD-induced rats | Cardiovascular function ↑ glucose metabolism ↑ | [179] | ||
Cucurbitaceous vegetables (cucurbitacins, carotenoids, phytosterols, antioxidative polyphenols and polyunsaturated fatty acids, etc.) | Cucurbitacin I | H2O2-treated H9c2 | NRF-1, PPARα, ERRα, PGC-1-β ↑ | [183] | |
Bitter gourd extract | Cholesterol-fed rats | GPX and CAT levels ↑ | [184] | ||
Pumpkin seed protein | High-fructose diet rats | TC and TG level ↓ the activity of SOD, CAT, and GPx ↑ | [185] | ||
Cucumis | Angiotensin II-Induced HMEC-1 | NO bioavailability ↑ ICAM-1 ↑ | [186] | ||
Cruciferous vegetable (carotene, vitamins, folic acid and minerals, glucosinolates, etc.) | I3C | Spontaneously hypertensive rats and Wistar Kyoto rats | NO bioavailability ↑ Hsp70 ↑ ROS ↓ | [190,191] | |
Other food | Okra | Okra seed extract (quercetin 3-O-(malonyl)-glucose, quercetin Cortex-3-O-glucose-xylose and kaempferol-3-O-glucose) | H2O2-induced HMEC-1 | VCAM-1, SELE ↓ | [195] |
Okra powder | LDLr-KO mice | The extent of atherosclerosis ↓ | [196] | ||
tomatoes, carrots, watermelon, papaya, and guava | Lycopene | ApoE−/− mice | HNF-1α, NPC1L1 ↓ LDL-C level ↓, HDL-C level ↑ the extent of atherosclerosis ↓ | [198] | |
abyssal Fish: salmon, trout, anchovies, sardines; Flaxseeds, flaxseed oil, walnuts, soybeans | omega3 and omega6 | HUVECs | NO availability ↑ | [204] | |
Drink | Tea | Green tea extract epigallocatechin gallate | Bisphenol A-induced HUVECs | MDA levels ↓ | [200] |
Red wine | Resveratrol | HFD-induced mice | PI3K/Akt/eNOs/PPARγ pathway | [202] | |
Red wine polyphenols | HFD-induced SR-B1 KO/ApoER61h/h mice | MDA level ↓ atherosclerotic plaque area ↓ | [201] |
Preparation | Ingredients | Disease | Sample Counts | References |
---|---|---|---|---|
DanshenDuofensuanyan injection and Danshen drop spill | Danshen extract | stable angina pectoris | 156 patients | [221] |
Compound Danshen dripping pills (CDDPs) combined with PCI | Danshen, Panax notoginseng and borneol | coronary heart disease | 2574 patients | [208] |
Danhong injection (DHI) | the water-soluble complex from Danshen and Honghua | stable angina | 4458 patients | [210] |
Xuesaitong (XST) | PNS | unstable angina | 1828 patients | [217] |
Combined administration of Korean red ginseng and American ginseng | Korean red ginseng and American ginseng | hypertension and type 2 diabetes | 80 patients | [220] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tan, Y.; Cheong, M.S.; Cheang, W.S. Roles of Reactive Oxygen Species in Vascular Complications of Diabetes: Therapeutic Properties of Medicinal Plants and Food. Oxygen 2022, 2, 246-268. https://doi.org/10.3390/oxygen2030018
Tan Y, Cheong MS, Cheang WS. Roles of Reactive Oxygen Species in Vascular Complications of Diabetes: Therapeutic Properties of Medicinal Plants and Food. Oxygen. 2022; 2(3):246-268. https://doi.org/10.3390/oxygen2030018
Chicago/Turabian StyleTan, Yi, Meng Sam Cheong, and Wai San Cheang. 2022. "Roles of Reactive Oxygen Species in Vascular Complications of Diabetes: Therapeutic Properties of Medicinal Plants and Food" Oxygen 2, no. 3: 246-268. https://doi.org/10.3390/oxygen2030018
APA StyleTan, Y., Cheong, M. S., & Cheang, W. S. (2022). Roles of Reactive Oxygen Species in Vascular Complications of Diabetes: Therapeutic Properties of Medicinal Plants and Food. Oxygen, 2(3), 246-268. https://doi.org/10.3390/oxygen2030018