Effect of Oxygen Partial Pressure on Crystal Structure, Oxygen Vacancy, and Surface Morphology of Epitaxial SrTiO3 Thin Films Grown by Ion Beam Sputter Deposition
Abstract
:1. Introduction
2. Materials and Methods
2.1. Growth of STO Films by IBSD
2.2. Characterization
3. Results and Discussion
3.1. Structural Properties
3.2. Surface Chemistry and Oxygen Vacancy
3.3. Surface Morphology
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Takashima, H.; Wang, R.; Kasai, N.; Shoji, A. Preparation of parallel capacitor of epitaxial SrTiO3 film with a single-crystal-like behavior. Appl. Phys. Lett. 2003, 83, 2883–2885. [Google Scholar] [CrossRef]
- Hao, J.H.; Luo, Z.; Gao, J. Effects of substrate on the dielectric and tunable properties of epitaxial SrTiO3 thin films. J. Appl. Phys. 2006, 100, 114107. [Google Scholar] [CrossRef] [Green Version]
- Hara, T.; Ishiguro, T.; Wakiya, N.; Shinozaki, K. Oxygen sensing properties of SrTiO3 thin films. Jpn. J. Appl. Phys. 2008, 47, 7486–7489. [Google Scholar] [CrossRef]
- Niu, G.; Yin, S.; Saint-Girons, G.; Gautier, B.; Leoeur, P.; Pillard, V.; Hollinger, G.; Vilquin, B. Epitaxy of BaTiO3 thin film on Si(0 01) using a SrTiO3 buffer layer for non-volatile memory application. Microelectron. Eng. 2011, 88, 1232–1235. [Google Scholar] [CrossRef]
- Rieck, J.L.; Hensling, F.V.E.; Dittmann, R. Trade-off between variability and retention of memristive epitaxial SrTiO3 devices. APL Mater. 2021, 9, 021110. [Google Scholar] [CrossRef]
- Biasotti, M.; Pellegrino, L.; Buzio, R.; Bellingeri, E.; Bernini, C.; Siri, A.S.; Marré, D. Fabrication and electromechanical actuation of epitaxial SrTiO3 (001) microcantilevers. J. Micromech. Microeng. 2013, 23, 035031. [Google Scholar] [CrossRef]
- Khodan, A.N.; Guyard, S.; Contour, J.-P.; Crété, D.-G.E.; Jacquet, K.; Bouzehouane, K. Pulsed laser deposition of epitaxial SrTiO3 films: Growth, structure and functional properties. Thin Solid Film 2007, 515, 6411–6432. [Google Scholar] [CrossRef]
- Groenendijk, D.J.; Gariglio, S. Sequential pulsed laser deposition of homoepitaxial SrTiO3 thin films. J. Appl. Phys. 2016, 120, 225307. [Google Scholar] [CrossRef] [Green Version]
- Niu, F.; Wessels, B.W. Surface and interfacial structure of epitaxial SrTiO3 thin films on (001) Si grown by molecular beam epitaxy. J. Cryst. Growth 2007, 300, 509–518. [Google Scholar] [CrossRef]
- Lapano, J.; Brahlek, M.; Zhang, L.; Roth, J.; Pogrebnyakov, A.; Engel-Herbert, R. Scaling growth rates for perovskite oxide virtual substrates on silicon. Nat. Commun. 2019, 10, 2464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gilbert, S.R.; Wessel, B.W.; Studebaker, D.B.; Marks, T.J. Epitaxial growth of SrTiO3 thin films by metaloraganic chemical vapor deposition. Appl. Phys. Lett. 1995, 66, 3298–3300. [Google Scholar] [CrossRef]
- Chen, J.; Ito, A.; Goto, T. High-speed epitaxial growth of SrTiO3 transparent thick films composed of close-packed nanocolumns using laser chemical vapor deposition. Vacuum 2020, 177, 109424. [Google Scholar] [CrossRef]
- Wang, X.; Helmersson, U.; Madsen, L.D.; Ivanov, I.P.; Münger, P. Composition, structure, and dielectric tunability of epitaxial SrTiO3 thin films grown by radio frequency magnetron sputtering. J. Vac. Sci. Technol. A 1999, 17, 564–570. [Google Scholar] [CrossRef]
- Wang, X.; Olafsson, S.; Sandström, P.; Helmersson, U. Growth of SrTiO3 thin films on LaAlO3(001) substrates; the influence of growth temperature on composition, orientation, and surface morphology. Thin Solid Film 2000, 360, 181–186. [Google Scholar] [CrossRef]
- Panomsuwan, G.; Takai, O.; Saito, N. Fabrication and characterization of epitaxial SrTiO3/Nb-doped SrTiO3 superlattices by double ECR ion beam sputter deposition. Vacuum 2013, 89, 35–39. [Google Scholar] [CrossRef]
- Panomsuwan, G.; Takai, O.; Saito, N. Effect of growth temperature on structural and morphological evolution of epitaxial SrTiO3 thin films grown on LaAlO3 (001) substrates by ion beam sputter deposition. Vacuum 2014, 109, 175–179. [Google Scholar] [CrossRef]
- Panomsuwan, G.; Saito, N. Thickness-dependent strain evolution of epitaxial SrTiO3 thin films grown by ion beam sputter deposition. Cryst. Res. Technol. 2018, 53, 1799211. [Google Scholar] [CrossRef]
- Mazet, L.; Yang, S.M.; Kalinin, S.V.; Schamm-Chardon, S.; Dubourdieu, C. A review of molecular beam epitaxy of ferroelectric BaTiO3 films on Si, Ge and GaAs substrates and their applications. Sci. Technol. Adv. Mater. 2015, 16, 036005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manova, D.; Gerlach, J.W.; Mändl, S. Thin films deposition using energetic ions. Materials 2010, 3, 4109–4141. [Google Scholar] [CrossRef]
- Feder, R.; Frost, F.; Neumann, H.; Bundesmann, C.; Rauschenbach, B. Systematic investigations of low energy Ar ion beam sputtering of Si and Ag. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2013, 317, 137–142. [Google Scholar] [CrossRef]
- Becker, M.; Gies, M.; Polity, A.; Chatterjee, S.; Klar, P.J. Materials processing using radio-frequency ion-sources: Ion-beam sputter-deposition and surface treatment. Rev. Sci. Instrum. 2019, 90, 023901. [Google Scholar] [CrossRef]
- Ohly, C.; Hoffmann-Eifert, S.; Guo, X.; Schubert, J.; Waser, R. Electrical conductivity of epitaxial SrTiO3 thin films as a function of oxygen partial pressure and temperature. J. Am. Ceram. Soc. 2006, 89, 2845–2852. [Google Scholar] [CrossRef]
- Cai, H.L.; Wu, X.S.; Gao, J. Effect of oxygen content on structural and transport properties in SrTiO3–x thin films. Chem. Phys. Lett. 2009, 467, 313–317. [Google Scholar] [CrossRef]
- Ambwani, P.; Xu, P.; Haugstad, G.; Jeong, J.S.; Deng, R.; Mkhoyan, K.A.; Jalan, B.; Leighton, C. Defects, stoichiometry, and electronic transport in SrTiO3-depilayers: A high pressure oxygen sputter deposition study. J. Appl. Phys. 2016, 120, 055704. [Google Scholar] [CrossRef] [Green Version]
- Tyunina, M.; Rusevich, L.L.; Kotomin, E.A.; Pacherova, O.; Kocourek, T.; Dejneka, A. Epitaxial growth of perovskite oxide films facilitated by oxygen vacancies. J. Mater. Chem. C 2021, 9, 1693–1700. [Google Scholar] [CrossRef]
- Trabelsi, H.; Bejar, M.; Dhahri, E.; Valente, M.A.; Graca, M.P.F. Oxygen-vacancy-related giant permittivity and ethanol sensing response in SrTiO3–δ ceramics. Phys. E Low-Dimens. Syst. Nanostructures 2019, 108, 317–325. [Google Scholar] [CrossRef]
- Kang, K.T.; Seo, H.I.; Kwon, O.; Lee, K.; Bae, J.-S.; Chu, M.-W.; Chae, S.C.; Kim, Y.; Choi, W.S. Ferroelectricity in SrTiO3 epitaxial thin films via Sr-vacancy-induced tetragonality. Appl. Surf. Sci. 2020, 499, 143930. [Google Scholar] [CrossRef]
- Xu, W.; Yang, J.; Bai, W.; Tang, K.; Zhang, Y.; Tang, X. Oxygen vacancy induced photoluminescence and ferromagnetism in SrTiO3 thin films by molecular beam epitaxy. J. Appl. Phys. 2013, 114, 154106. [Google Scholar] [CrossRef]
- Pai, Y.-Y.; Tylan-Tyler, A.; Irvin, P.; Levy, J. Physics of SrTiO3-based heterostructures and nanostructures: A review. Rep. Prog. Phys. 2018, 81, 036503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ohnishi, T.; Takahashi, K.; Nakamura, M.; Kawasaki, M.; Yoshimoto, M.; Koinuma, H. A-site layer terminated perovskite substrate: NdGaO3. Appl. Phys. Lett. 1999, 74, 2531. [Google Scholar] [CrossRef]
- Jin, S.; Gao, G.; Wu, W.; Zhou, X. Effect of angular-distortion-induced strain on structural and transport properties of epitaxial La0.7Sr0.3MnO3 thin films. J. Phys. D Appl. Phys. 2007, 40, 305–309. [Google Scholar] [CrossRef] [Green Version]
- Biegalski, M.D.; Fong, D.D.; Eastman, J.A.; Fuoss, P.H.; Streiffer, S.K.; Heeg, T.; Schubert, J.; Tian, W.; Nelson, C.T.; Pan, X.Q.; et al. Critical thickness of high structural quality SrTiO3 films grown on orthorhombic (101) DyScO3. J. Appl. Phys. 2008, 104, 114109. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.G.; Kim, Y.; Hwang, S.; Kim, G.; Kang, T.D.; Kim, M.; Kim, M.; Noh, T.W. Double-layer buffer template to grow commensurate epitaxial BaBiO3 thin films. APL Mater. 2016, 4, 126106. [Google Scholar] [CrossRef] [Green Version]
- Andrei, F.; Ion, V.; Bîrjega, R.; Dinescu, M.; Enea, N.; Pantelica, D.; Mihai, M.D.; Maraloiu, V.-A.; Teodorescu, V.S.; Marcu, I.-C.; et al. Thickness-dependent photoelectrochemical water splitting properties of self-assembled nanostructured LaFeO3 perovskite thin films. Nanomaterials 2016, 11, 1371. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.A.; Jeong, H.; Woo, S.; Hwang, J.-Y.; Choi, S.-Y.; Kim, S.-D.; Choi, M.; Roh, S.; Yu, H.; Hwang, J.; et al. Phase transitions via selective elemental vacancy engineering in complex oxide thin films. Sci. Rep. 2016, 6, 23649. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jalan, B.; Engel-Herbert, R.; Wright, N.J.; Stemmer, S. Growth of high-quality SrTiO3 films using a hybrid molecular beam epitaxy approach. J. Vac. Sci. Technol. 2009, 27, 461–464. [Google Scholar] [CrossRef]
- Lu, P.; Jia, Q.X.; Findikoglu, A.T. Effects of homo-epitaxial LaAlO3 layer on microstructural properties of SrTiO3 films grown on LaAlO3 substrates. Thin Solid Film 1999, 348, 38–43. [Google Scholar] [CrossRef]
- Ayer, J.E. The measurement of threading dislocation densities in semiconductor crystals by X-ray diffraction. J. Cryst. Growth 1994, 135, 71–77. [Google Scholar] [CrossRef]
- Huang, S.R.; Lu, X.; Barnett, A.; Opila, R.L.; Mogili, V.; Tanner, D.A.; Nakahara, S. Characterization of the microstructure of GaP films grown on {111} Si by liquid phase epitaxy. ACS Appl. Mater. Interfaces 2014, 6, 18626–18634. [Google Scholar] [CrossRef]
- Zhai, Z.Y.; Li, X.Z.; Zhi, S.S.; Wu, X.S.; Hao, J.H.; Gao, J. Dislocation density in SrTiO3 film grown on DyScO3 by pulse laser ablation. Surf. Rev. Lett. 2007, 4, 779–782. [Google Scholar] [CrossRef]
- Li, G.; Bai, Y.; Wu, S.; Zhang, W. Variation in photocatalytic activity of SrTiO3 (100) single-crystal thin films with different substrates and annealing atmosphere. Sci. Adv. Mater. 2013, 5, 746–768. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, C.; Zang, G.; Lv, S.; Li, L. Effect of doping content of Pr ions on oxygen vacancies in SrTiO3 films. J. Alloys Compd. 2015, 637, 277–280. [Google Scholar] [CrossRef]
- Shkabko, A.; Aguirre, M.H.; Marozau, I.; Lippert, T.; Chou, Y.-S.; Douthwaite, R.E.; Weidenkaff, A. Synthesis and transport properties of SrTiO3−xNy/SrTiO3−δ layered structures produced by microwave-induced plasma nitridation. J. Phys. D: Appl. Phys. 2009, 42, 145202. [Google Scholar] [CrossRef] [Green Version]
- Pal, P.; Kumar, P.; Aswin, V.; Dogra, A.; Joshi, A.G. Chemical potential shift and gap-state formation in SrTiO3−δ revealed by photoemission spectroscopy. J. Appl. Phys. 2014, 116, 053704. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.C.; Lei, C.M.; Wang, G.J.; Sun, X.H.; Li, T.; Huang, S.G.; Wang, H.; Li, Y.D. Oxygen-vacancy-related dielectric relaxations in SrTiO3 at high temperatures. J. Appl. Phys. 2013, 113, 094103. [Google Scholar] [CrossRef]
- Wagner, C.D.; Davis, L.E.; Zeller, M.V.; Taylor, J.A.; Raymond, R.M.; Gale, L.H. Empirical atomic sensitivity factors for quantitative analysis by electron spectroscopy for chemical analysis. Surf. Interface Anal. 1981, 3, 211–225. [Google Scholar] [CrossRef]
Sample | a (nm) | c (nm) | c/a | εa | εc |
---|---|---|---|---|---|
STO-1 | 0.3895 | 0.3972 | 1.0198 | −0.0026 | 0.0172 |
STO-2 | 0.3892 | 0.3953 | 1.0157 | −0.0033 | 0.0123 |
STO-3 | 0.3888 | 0.3951 | 1.0162 | −0.0044 | 0.0118 |
Sample | Sr:Ti:O | Sr/Ti | OV/OL | Ti3+/Ti4+ |
---|---|---|---|---|
STO-1 | 1:0.90:2.92 | 1.11 | 0.13 | 0.23 |
STO-2 | 1:0.91:2.87 | 1.10 | 0.11 | 0.16 |
STO-3 | 1:0.89:2.82 | 1.12 | 0.06 | 0.13 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Panomsuwan, G.; Saito, N. Effect of Oxygen Partial Pressure on Crystal Structure, Oxygen Vacancy, and Surface Morphology of Epitaxial SrTiO3 Thin Films Grown by Ion Beam Sputter Deposition. Oxygen 2021, 1, 62-72. https://doi.org/10.3390/oxygen1010007
Panomsuwan G, Saito N. Effect of Oxygen Partial Pressure on Crystal Structure, Oxygen Vacancy, and Surface Morphology of Epitaxial SrTiO3 Thin Films Grown by Ion Beam Sputter Deposition. Oxygen. 2021; 1(1):62-72. https://doi.org/10.3390/oxygen1010007
Chicago/Turabian StylePanomsuwan, Gasidit, and Nagahiro Saito. 2021. "Effect of Oxygen Partial Pressure on Crystal Structure, Oxygen Vacancy, and Surface Morphology of Epitaxial SrTiO3 Thin Films Grown by Ion Beam Sputter Deposition" Oxygen 1, no. 1: 62-72. https://doi.org/10.3390/oxygen1010007
APA StylePanomsuwan, G., & Saito, N. (2021). Effect of Oxygen Partial Pressure on Crystal Structure, Oxygen Vacancy, and Surface Morphology of Epitaxial SrTiO3 Thin Films Grown by Ion Beam Sputter Deposition. Oxygen, 1(1), 62-72. https://doi.org/10.3390/oxygen1010007