Evolution Mechanisms of an Artificial Calco-Magnesian Agglomerate in Seawater: Analysis of Powder by Experiments and Numerical Modeling
Abstract
1. Introduction
2. Material and Methods
2.1. Material
2.2. Experimental Methods
2.3. Numerical Contribution
2.3.1. Phases and Kinetics Models Choices
2.3.2. Dissolution Model
2.3.3. Summary of Numerical Model Parameters
3. Results
3.1. Experiment Analysis
3.2. Numerical Experiments
3.3. Discussion
3.4. Evolution Mechanism Proposal Under Accelerated Conditions
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zanibellato, A. Synthèse et études Physico-Chimiques d’un Agglomérat Calcomagnésien Formé sur acier en Milieu Marin: Un éco-Matériau Pour la Protection du Littoral. Ph.D. Thesis, La Rochelle Université, La Rochelle, France, 2016. [Google Scholar]
- Carré, C.; Zanibellato, A.; Achgare, N.; Mahieux, P.Y.; Turcry, P.; Jeannin, M.; Sabot, R. Electrochemical limestone synthesis in seawater binds metal grids and sediments for coastal protection. Environ. Chem. Lett. 2020, 18, 1685–1692. [Google Scholar] [CrossRef]
- Prevot, J. Etude du Conglomérat dépôt Calcomagnésien/Scories: Formation, Propriétés et Applications. Ph.D. Thesis, Université de la Nouvelle-Calédonie, Nouméa, France, 2020. [Google Scholar]
- Zadi, D.L. Mécanismes Physico-Chimiques Impliqués Dans la Formation et l’évolution à l’Abandon d’un Matériau Sédimentaire Innovant généré en Milieu Marin par Polarisation Cathodique. Ph.D. Thesis, Université de La Rochelle, La Rochelle, France, 2022. [Google Scholar]
- Marais, C. Formation d’un agglomérat calcomagnésien en écoulement à base de granulats recyclés pour la protection côtière. Acad. J. Civ. Eng. 2024, 42, 880–889. [Google Scholar] [CrossRef]
- Sharker, T.; Simonsen, K.R.; Margheritini, L.; Kucheryavskiy, S.V.; Simonsen, M.E. Optimisation of electrochemical deposition of calcareous material during cathodic protection by implementing response surface methodology (RSM). Electrochim. Acta 2023, 444, 141960. [Google Scholar] [CrossRef]
- Mahlobo, M.G.R.; Seadira, T.W.P.; Mabuza, M.M.; Olubambi, P.A. Application of voltammetry as a technique to monitor cathodic protection performance of steel in simulated soil solution. Electrochem. Commun. 2024, 166, 107777. [Google Scholar] [CrossRef]
- Souiad, F.; Bendaoud-Boulahlib, Y.; Rodrigues, A.S.; Fernandes, A.; Ciríaco, L.; Pacheco, M.J.; Lopes, A. Electrodeposition of Calcium Carbonate and Magnesium Carbonate from Hard Water on Stainless-Steel Electrode to Prevent Natural Scaling Phenomenon. Water 2021, 13, 2752. [Google Scholar] [CrossRef]
- Zadi, L.; Turcry, P.; Soive, A.; Zanibellato, A.; Mahieux, P.Y.; Sabot, R.; Jeannin, M. Physico-chemical stability evaluation of a sedimentary. J. Coast. Conserv. 2023, 27, 8. [Google Scholar] [CrossRef]
- Deslouis, C.; Festy, D.; Gil, O.; Maillot, V.; Touzain, S.; Tribollet, B. Characterization of calcareous deposits in artificial sea water by impedances techniques: 2-deposit of Mg(OH)2 without CaCO3. Electrochim. Acta 2000, 45, 1837–1845. [Google Scholar] [CrossRef]
- Barchiche, C.; Deslouis, C.; Gil, O.; Refait, P.; Tribollet, B. Characterisation of calcareous deposits by electrochemical methods: Role of sulphates, calcium concentration and temperature. Electrochim. Acta 2004, 49, 2833–2839. [Google Scholar] [CrossRef]
- Gautier, Q. Cinétiques de Précipitation de Minéraux Carbonatés Magnésiens, Influence de Ligands Organiques, et Conséquences Pour la Séquestration Minérale de CO2. Ph.D. Thesis, Université Paris-Est, Paris, France, 2012. [Google Scholar]
- Marchand, J.; Samson, E. Predicting the service-life of concrete structures - Limitations of simplified models. Cem. Concr. Compos. 2009, 31, 515–521. [Google Scholar] [CrossRef]
- Tran, V.Q.; Soive, A.; Baroghel-Bouny, V. Modelisation of chloride reactive transport in concrete including thermodynamic equilibrium, kinetic control and surface complexation. Cem. Concr. Res. 2018, 110, 70–85. [Google Scholar] [CrossRef]
- Yan, J.F.; White, R.E.; Griffin, R.B. Parametric Studies of the Formation of Calcareous Deposits on Cathodically Protected Steel in Seawater. J. Electrochem. Soc. 1993, 140, 1275–1280. [Google Scholar] [CrossRef]
- Blanc, P.; Lassin, A.; Piantone, P.; Azaroual, M.; Jacquemet, N.; Fabbri, A.; Gaucher, E.C. Thermoddem: A geochemical database focused on low temperature water/rock interactions and waste materials. Appl. Geochem. 2012, 27, 2107–2116. [Google Scholar] [CrossRef]
- Thiery, M. Modelling of Atmospheric Carbonation of Cement Based Materials Considering the Kinetic Effects and Modifications of the Microstructure and the Hydric State Mickaël Thiery to Cite This Version: HAL Id: Pastel-00001517 Modélisation de la Carbonatation Atm. Ph.D. Thesis, Ecole Nationale des Ponts et Chaussées, Champs-sur-Marne, France, 2005. [Google Scholar]
- Villain, G.; Thiery, M.; Platret, G. Measurement methods of carbonation profiles in concrete: Thermogravimetry, chemical analysis and gammadensimetry. Cem. Concr. Res. 2007, 37, 1182–1192. [Google Scholar] [CrossRef]
- Shafiu Kamba, A.; Ismail, M.; Tengku Ibrahim, T.A.; Zakaria, Z.A.B. Synthesis and characterisation of calcium carbonate aragonite nanocrystals from cockle shell powder (Anadara granosa). J. Nanomater. 2013, 2013, 9. [Google Scholar] [CrossRef]
- Appelo, C.A.J.; Postma, D. Geochemistry, Groundwater and Pollution, 2nd ed.; A. A. Balkema Publishers: Rotterdam, The Netherlands, 2005; p. 649. [Google Scholar]
- Chou, L.; Garrels, R.M.; Wollast, R. Comparative study of the kinetics and mechanisms of dissolution of carbonate minerals. Chem. Geol. 1989, 78, 269–282. [Google Scholar] [CrossRef]
- Sanjuan, B.; Girard, J.P. Review of Kinetic Data on Carbonate Mineral Precipitation; Technical Report 4; BRGM: Orléans, France, 1996. [Google Scholar]
- Saldi, G.D.; Jordan, G.; Schott, J.; Oelkers, E.H. Magnesite growth rates as a function of temperature and saturation state. Geochim. Cosmochim. Acta 2009, 73, 5646–5657. [Google Scholar] [CrossRef]
- Grandjean, M. Étude De La Réactivité Et De L’Hydratation Des Particules Obtenues Par Carbonatation De Saumures Alcalines. Ph.D. Thesis, Université de Lorraine, Nancy, France, 2013. [Google Scholar]
- Zhong, S.; Mucci, A. Calcite and aragonite precipitation from seawater solutions of various salinities: Precipitation rates and overgrowth compositions. Chem. Geol. 1989, 78, 283–299. [Google Scholar] [CrossRef]
- Burton, E.A.; Walters, L.M. The role of pH in phosphate inhibition of calcite and aragonite precipitation rates in seawater. Geochim. Cosmochim. Acta 1990, 54, 797–808. [Google Scholar] [CrossRef]
- Busenberg, E.; Plummer, L.N. A comparative study of the dissolution and crystal growth kinetics of calcite and aragonite. US Geol. Surv. Bull. 1987, 1578, 139–168. [Google Scholar]
- Plummer, L.; Wigly, T.; Parkhurst, D. The Kinetics of calcite dissolution in CO2-Water systems at 5° to 60 °C and 0.0 to 1.0 Atm CO2. J. Sci. 1978, 278, 179–216. [Google Scholar]
- Palandri, J.L.; Kharaka, Y.K. A Compilation of Rate Parameters of Water-Mineral Interaction Kinetics for Application to Geochemical Modeling; Technical report; Survey, U.S. Department of the Interior U.S. Geological Survey: Reston, VA, USA, 2004. [Google Scholar]
- Pokrovsky, O.S.; Schott, J. Experimental study of brucite dissolution and precipitation in aqueous solutions: Surface speciation and chemical affinity control. Geochim. Cosmochim. Acta 2004, 68, 31–45. [Google Scholar] [CrossRef]
- Stumm, W. Reactivity at the mineral-water interface: Dissolution and inhibition. Colloids Surfaces A Physicochem. Eng. Asp. 1997, 120, 143–166. [Google Scholar] [CrossRef]
- Pokrovsky, O.S.; Schott, J.; Castillo, A. Kinetics of Brucite Dissolution at 25 °C in the Presence of Organic and Inorganic Ligands and Divalent Metals. Geochem. Cosmochim. Acta 2005, 69, 905–918. [Google Scholar] [CrossRef]
- Saldi, G.D.; Knauss, K.G.; Spycher, N.; Oelkers, E.H.; Jones, A.P. A combined experimental and modelling study of granite hydrothermal alteration. Geothermics 2023, 108, 102633. [Google Scholar] [CrossRef]
- Habte, L.; Khan, M.D.; Shiferaw, N.; Farooq, A.; Hye Lee, M.; Ho Jung, S.; Ahn, J.W. Synthesis, characterization and mechanism study of green aragonite crystals fromwaste biomaterials as calcium supplement. Sustainability 2020, 12, 5062. [Google Scholar] [CrossRef]
- Reddy, M.M.; Plummer, L.N.; Busenberg, E. Crystal growth of calcite from calcium bicarbonate solutions at constant Pco2 and 25 °C: A test of a calcite dissolution model. Geochim. Cosmochim. Acta 1981, 45, 1281–1289. [Google Scholar] [CrossRef]
- Prieto, M.; Cubillas, P.; Fernandez-Gonzalez, A. Uptake of dissolved Cd by biogenic and abiogenic aragonite: A comparison with sorption onto calcite. Geochim. Cosmochim. Acta 2003, 67, 3859–3869. [Google Scholar] [CrossRef]
- Cubillas, P.; Köhler, S.; Prieto, M.; Chaïrat, C.; Oelkers, E.H. Experimental determination of the dissolution rates of calcite, aragonite, and bivalves. Chem. Geol. 2005, 216, 59–77. [Google Scholar] [CrossRef]
- Alkhatib, M.; Eisenhauer, A. Calcium and Strontium Isotope Fractionation during Precipitation from Aqueous Solutions as a Function of Temperature and Reaction Rate; II. Aragonite. Geochim. Cosmochim. Acta 2017, 209, 320–342. [Google Scholar] [CrossRef]
- Tadier, S.; Rokidi, S.; Rey, C.; Combes, C.; Koutsoukos, P.G. Crystal growth of aragonite in the presence of phosphate. J. Cryst. Growth 2017, 458, 44–52. [Google Scholar] [CrossRef]
- Kumada, N.; Yonesaki, Y.; Takei, T.; Kinomura, N. Hydrothermal conversion of chrysotile to amorphous silica or brucite. J. Ceram. Soc. Jpn. 2009, 117, 1240–1242. [Google Scholar] [CrossRef]
- Harrison, A.L.; Power, I.M.; Dipple, G.M. Accelerated carbonation of brucite in mine tailings for carbon sequestration. Environ. Sci. Technol. 2013, 47, 126–134. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Pang, H.; Chen, W.; Lin, Y.; Zong, L.; Ning, G. Controllable Fabrication of Zinc Borate Hierarchical Nanostructure on Brucite Surface for Enhanced Mechanical Properties and Flame Retardant Behaviors. ACS Appl. Mater. Interfaces 2014, 6, 7223–7235. [Google Scholar] [CrossRef] [PubMed]
- Tutolo, B.M.; Luhmann, A.J.; Tosca, N.J.; Seyfried, W.E. Serpentinization as a reactive transport process: The brucite silicification reaction. Earth Planet. Sci. Lett. 2018, 484, 385–395. [Google Scholar] [CrossRef]
- Jordan, G.; Rammensee, W. Dissolution rates and activation energy for dissolution of brucite (001): A new method based on the microtopography of crystal surfaces. Geochim. Cosmochim. Acta 1996, 60, 5055–5062. [Google Scholar] [CrossRef]
- Zhang, Z.; Xie, Y.; Xu, X.; Pan, H.; Tang, R. Transformation of amorphous calcium carbonate into aragonite. J. Cryst. Growth 2012, 343, 62–67. [Google Scholar] [CrossRef]
- Rodriguez-Blanco, J.D.; Shaw, S.; Benning, L.G. The kinetics and mechanisms of amorphous calcium carbonate (ACC) crystallization to calcite, via vaterite. Nanoscale 2011, 3, 265–271. [Google Scholar] [CrossRef]
- Chakrabarty, D.; Mahapatra, S. Aragonite crystals with unconventional morphologies. J. Mater. Chem. 1999, 9, 2953–2957. [Google Scholar] [CrossRef]
- Wang, C.; Xu, Y.; Liu, Y.; Li, J. Synthesis and characterization of lamellar aragonite with hydrophobic property. Mater. Sci. Eng. C 2009, 29, 843–846. [Google Scholar] [CrossRef]
- Carteret, C.; De La Pierre, M.; Dossot, M.; Pascale, F.; Erba, A.; Dovesi, R. The vibrational spectrum of CaCO3 aragonite: A combined experimental and quantum-mechanical investigation. J. Chem. Phys. 2013, 138. [Google Scholar] [CrossRef]
- Frost, R.L.; Kloprogge, J.T. Infrared emission spectroscopic study of brucite. Spectrochim. Acta-Part A Mol. Biomol. Spectrosc. 1999, 55, 2195–2205. [Google Scholar] [CrossRef]
- Reig, F.B.; Adelantado, J.V.; Moya Moreno, M.C. FTIR quantitative analysis of calcium carbonate (calcite) and silica (quartz) mixtures using the constant ratio method. Application to geological samples. Talanta 2002, 58, 811–821. [Google Scholar] [CrossRef]
- Saikia, B.J.; Parthasarathy, G.; Sarmah, N.C. Fourier transform infrared spectroscopic estimation of crystallinity in SiO2 based rocks. Bull. Mater. Sci. 2008, 31, 775–779. [Google Scholar] [CrossRef]
- Bandopadhyay, A.K. Determination of quartz content for Indian coals using an FTIR technique. Int. J. Coal Geol. 2010, 81, 73–78. [Google Scholar] [CrossRef]
- Brečević, L.; Nielsen, A.E. Solubility of amorphous calcium carbonate. J. Cryst. Growth 1989, 98, 504–510. [Google Scholar] [CrossRef]
- Rodriguez-Blanco, J.D.; Shaw, S.; Benning, L.G. How to make ’stable’ ACC: Protocol and preliminary structural characterization. Mineral. Mag. 2008, 72, 283–286. [Google Scholar] [CrossRef]
- Goodwin, A.L.; Michel, F.M.; Phillips, B.L.; Keen, D.A.; Dove, M.T.; Reeder, R.J. Nanoporous structure and medium-range order in synthetic amorphous calcium carbonate. Chem. Mater. 2010, 22, 3197–3205. [Google Scholar] [CrossRef]
- Bots, P.; Benning, L.G.; Rodriguez-Blanco, J.D.; Roncal-Herrero, T.; Shaw, S. Mechanistic insights into the crystallization of amorphous calcium carbonate (ACC). Cryst. Growth Des. 2012, 12, 3806–3814. [Google Scholar] [CrossRef]
- Ihli, J.; Wong, W.C.; Noel, E.H.; Kim, Y.Y.; Kulak, A.N.; Christenson, H.K.; Duer, M.J.; Meldrum, F.C. Dehydration and crystallization of amorphous calcium carbonate in solution and in air. Nat. Commun. 2014, 5, 3169. [Google Scholar] [CrossRef]
- Landivar Macias, A.; Jacobsen, S.D.; Rotta Loria, A.F. Electrodeposition of calcareous cement from seawater in marine silica sands. Commun. Earth Environ. 2024, 5, 442. [Google Scholar] [CrossRef]
- Clarkson, J.R.; Price, T.J.; Adams, C.J. Role of metastable phases in the spontaneous precipitation of calcium carbonate. J. Chem. Soc. Faraday Trans. 1992, 88, 243–249. [Google Scholar] [CrossRef]
- Galan, I.; Glasser, F.P.; Baza, D.; Andrade, C. Assessment of the protective effect of carbonation on portlandite crystals. Cem. Concr. Res. 2015, 74, 68–77. [Google Scholar] [CrossRef]
Phases | n | (m2/g) | ||||
---|---|---|---|---|---|---|
Aragonite | −3.92 | −7.4 | −10 | −1.78 | - | 0.1–3 |
Brucite | −4.73 | - | −8.24 | - | 0.5 | 5–15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zadi, L.; Soive, A.; Turcry, P.; Zanibellato, A.; Mahieux, P.-Y.; Sabot, R.; Jeannin, M. Evolution Mechanisms of an Artificial Calco-Magnesian Agglomerate in Seawater: Analysis of Powder by Experiments and Numerical Modeling. Coasts 2025, 5, 37. https://doi.org/10.3390/coasts5040037
Zadi L, Soive A, Turcry P, Zanibellato A, Mahieux P-Y, Sabot R, Jeannin M. Evolution Mechanisms of an Artificial Calco-Magnesian Agglomerate in Seawater: Analysis of Powder by Experiments and Numerical Modeling. Coasts. 2025; 5(4):37. https://doi.org/10.3390/coasts5040037
Chicago/Turabian StyleZadi, Louis, Anthony Soive, Philippe Turcry, Alaric Zanibellato, Pierre-Yves Mahieux, René Sabot, and Marc Jeannin. 2025. "Evolution Mechanisms of an Artificial Calco-Magnesian Agglomerate in Seawater: Analysis of Powder by Experiments and Numerical Modeling" Coasts 5, no. 4: 37. https://doi.org/10.3390/coasts5040037
APA StyleZadi, L., Soive, A., Turcry, P., Zanibellato, A., Mahieux, P.-Y., Sabot, R., & Jeannin, M. (2025). Evolution Mechanisms of an Artificial Calco-Magnesian Agglomerate in Seawater: Analysis of Powder by Experiments and Numerical Modeling. Coasts, 5(4), 37. https://doi.org/10.3390/coasts5040037