Satellite and Statistical Approach for the Characterization of Coastal Storms Causing Damage on the Dakar Coast, Capital of Senegal (West Africa)
Abstract
1. Introduction
2. Study Area
3. Materials and Methods
3.1. Hydrodynamic and Meteorological Data
3.2. Identification of Coastal Storms
- -
- Information about the respondent
- -
- General perception of coastal flooding, including its seasonality or frequency in the surveyed area, the territories likely to be affected, and various known coastal flooding events.
- -
- Specific events recalled by the respondent, including those documented in this study: the timing of inundations, their duration, spatial extent, water depth, personal experiences during these events, and their socio-economic impacts
3.2.1. Parameterization of Hazard Variables for the Characterization of Damaging Storms
3.2.2. Statistical Characterization of Storms Causing Coastal Damage
3.2.3. Statistical Data Processing and Machine Learning Method for Coastal Storms with Damage
4. Results
4.1. Coastal Storms Recorded on the Studied Stretch
4.2. Statistical Characterization of Coastal Storms Causing Damage to the Coast
4.3. Machine Learning to Discriminate Damaging Storms
5. Discussion
6. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Intergovernmental Panel on Climate Change (IPCC). Ocean, cryosphere and sea level change. In Climate Change 2021: The Physical Science Basis: Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University Press: Cambridge, UK, 2003; pp. 1211–1362. [Google Scholar] [CrossRef]
- Elneel, L.; Zitouni, M.S.; Mukhtar, H.; Al-Ahmad, H. Examining sea levels forecasting using autoregressive and prophet models. Sci. Rep. 2024, 14, 14337. [Google Scholar] [CrossRef]
- Su, Q.; Li, Z.; Li, G.; Zhu, D.; Hu, P. Coastal erosion risk assessment of Hainan Island, China. Acta Oceanol. Sin. 2023, 42, 79–90. [Google Scholar] [CrossRef]
- Tsiakos, C.-A.D.; Chalkias, C. Use of Machine Learning and Remote Sensing Techniques for Shoreline Monitoring: A Review of Recent Literature. Appl. Sci. 2023, 13, 3268. [Google Scholar] [CrossRef]
- Ohenhen, L.O.; Shirzaei, M.; Ojha, C.; Sherpa, S.F.; Nicholls, R.J. Disappearing cities on US coasts. Nature 2024, 627, 108–115. [Google Scholar] [CrossRef] [PubMed]
- Le Cozannet, G.; Bulteau, T.; Castelle, B.; Ranasinghe, R.; Wöppelmann, G.; Rohmer, J.; Bernon, N.; Idier, D.; Louisor, J.; Salas-Y-Mélia, D. Quantifying uncertainties of sandy shoreline change projections as sea level rises. Sci. Rep. 2019, 9, 42. [Google Scholar] [CrossRef]
- Sinay, L.; Carter, R.W. Climate Change Adaptation Options for Coastal Communities and Local Governments. Climate 2020, 8, 7. [Google Scholar] [CrossRef]
- Lebbe, T.B.; Rey-Valette, H.; Chaumillon, É.; Camus, G.; Almar, R.; Cazenave, A.; Claudet, J.; Rocle, N.; Meur-Férec, C.; Viard, F.; et al. Designing Coastal Adaptation Strategies to Tackle Sea Level Rise. Front. Mar. Sci. 2021, 8, 740602. [Google Scholar] [CrossRef]
- Becker, M.; Karpytchev, M.; Hu, A. Increased exposure of coastal cities to sea-level rise due to internal climate variability. Nat. Clim. Change 2023, 13, 367–374. [Google Scholar] [CrossRef]
- Boumis, G.; Moftakhari, H.R.; Moradkhani, H. Storm surge hazard estimation along the US Gulf Coast: A Bayesian hierarchical approach. Coast. Eng. 2023, 185, 104371. [Google Scholar] [CrossRef]
- Suanez, S.; Cariolet, J.M.; Trionnaire, E.L. Suivi topo-morphologique et aléa d’érosion littorale dans le nord Finistère (Bretagne): Le cas de la plage de Boutrouilles (Kerlouan). Géomorphologie Relief Process. Environ. 2024, 30, 3–26. [Google Scholar] [CrossRef]
- Woodruff, J.D.; Irish, J.L.; Camargo, S.J. Coastal flooding by tropical cyclones and sea-level rise. Nature 2013, 504, 44–52. [Google Scholar] [CrossRef]
- Hinkel, J.; Lincke, D.; Vafeidis, A.T.; Perrette, M.; Nicholls, R.J.; Tol, R.S.J.; Marzeion, B.; Fettweis, X.; Ionescu, C.; Levermann, A. Coastal flood damage and adaptation costs under 21st century sea-level rise. Proc. Natl. Acad. Sci. USA 2014, 111, 3292–3297. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Yi, S.; Li, M.; Wang, L.; Song, C. Effects of sea level rise, land subsidence, bathymetric change and typhoon tracks on storm flooding in the coastal areas of Shanghai. Sci. Total Environ. 2018, 621, 228–234. [Google Scholar] [CrossRef] [PubMed]
- Moore, F.C.; Obradovich, N. Using remarkability to define coastal flooding thresholds. Nat. Commun. 2020, 11, 530. [Google Scholar] [CrossRef] [PubMed]
- Snaiki, R.; Wu, T.; Whittaker, A.S.; Atkinson, J.F. Hurricane Wind and Storm Surge Effects on Coastal Bridges under a Changing Climate. Transp. Res. Rec. J. Transp. Res. Board. 2020, 2674, 23–32. [Google Scholar] [CrossRef]
- Leal, K.B.; Robaina, L.E.d.S.; Lima, A.d.S.D. Coastal impacts of storm surges on a changing climate: A global bibliometric analysis. Nat. Hazards 2022, 114, 1455–1476. [Google Scholar] [CrossRef]
- Reimann, L.; Hinkel, J.; Nicholls, R.J.; Vafeidis, A.T.; Tol, R.S.J. The Vulnerability of Coastal Zones will be Further Exacerbated by Growing Coastal Populations. Nat. Sustain. 2023, 6, 315–322. [Google Scholar]
- Cosby, A.G.; Lebakula, V.; Smith, C.N.; Wanik, D.W.; Bergene, K.; Rose, A.N.; Swanson, D.; Bloom, D.E. Accelerating growth of human coastal populations at the global and continent levels: 2000–2018. Sci. Rep. 2024, 14, 22489. [Google Scholar] [CrossRef]
- Ciavola, P.; Ferreira, O.; Haerens, P.; Van Koningsveld, M.; Armaroli, C. Storm impacts along European coastlines. Part 2: Lessons learned from the MICORE project. Environ. Sci. Policy 2011, 14, 924–933. [Google Scholar] [CrossRef]
- Kim, H.-J.; Suh, S.-W. Probabilistic Coastal Storm Surge Analyses using Synthesized Tracks Based on Historical Typhoon Parameters. J. Coast. Res. 2016, 75, 1132–1136. [Google Scholar] [CrossRef]
- Gerritsen, M.; Van der Wal, D.; Meijer, P.T. Morphodynamic impacts of extreme storm events on coastal systems. J. Coast. Res. 2018, 34, 617–629. [Google Scholar]
- Trifonova, E.V.; Valchev, N.N.; Andreeva, N.K.; Eftimova, P.T. Critical storm thresholds for morphological changes in the western Black Sea coastal zone. Geomorphology 2012, 143–144, 81–94. [Google Scholar] [CrossRef]
- Armaroli, C.; Duo, E. Validation of the coastal storm risk assessment framework along the Emilia-Romagna coast. Coast. Eng. 2018, 134, 159–167. [Google Scholar] [CrossRef]
- Anarde, K.A.; Kameshwar, S.; Irza, J.N.; Nittrouer, J.A.; Lorenzo-Trueba, J.; Padgett, J.E.; Sebastian, A.; Bedient, P.B. Impacts of Hurricane Storm Surge on Infrastructure Vulnerability for an Evolving Coastal Landscape. Nat. Hazards Rev. 2018, 19, 04017022. [Google Scholar] [CrossRef]
- Ghanavati, M.; Young, I.; Kirezci, E.; Ranasinghe, R.; Duong, T.M.; Luijendijk, A.P. An assessment of whether long-term global changes in waves and storm surges have impacted global coastlines. Sci. Rep. 2023, 13, 11549. [Google Scholar] [CrossRef] [PubMed]
- Dominguez, R.; Fenster, M.S.; McManus, J.W. Storm frequency, magnitude, and cumulative storm beach impact along the US east coast. Earth Surf. Dyn. 2024, 12, 1145–1163. [Google Scholar] [CrossRef]
- Li, Y.; Zhou, W.-H.; Shen, P. Flood risk assessment of loss of life for a coastal city under the compound effect of storm surge and rainfall. Urban. Clim. 2022, 47, 101396. [Google Scholar] [CrossRef]
- Kunze, S.; A Strobl, E. The global long-term effects of storm surge flooding on human settlements in coastal areas. Environ. Res. Lett. 2024, 19, 024016. [Google Scholar] [CrossRef]
- Yin, K.; Zhao, Y.; Zhou, S.; Li, X. How do storm surge disaster losses affect economic development?: Perspectives from disaster prevention and mitigation capacity. Sci. Total. Environ. 2024, 951, 175526. [Google Scholar] [CrossRef]
- Almar, R.; Kestenare, E.; Boucharel, J. On the key influence of remote climate variability from Tropical Cyclones, North and South Atlantic mid-latitude storms on the Senegalese coast (West Africa). Environ. Res. Commun. 2019, 1, 071001. [Google Scholar] [CrossRef]
- Dada, O.A.; Almar, R.; Oladapo, M.I. Recent coastal sea-level variations and flooding events in the Nigerian Transgressive Mud coast of Gulf of Guinea. J. Afr. Earth Sci. 2020, 161, 103668. [Google Scholar] [CrossRef]
- Thoithi, W.; Blamey, R.C.; Reason, C.J.C. April 2022 Floods over East Coast South Africa: Interactions between a Mesoscale Convective System and a Coastal Meso-Low. Atmosphere 2022, 14, 78. [Google Scholar] [CrossRef]
- Brempong, E.K.; Almar, R.; Angnuureng, D.B.; Mattah, P.A.D.; Jayson-Quashigah, P.-N.; Antwi-Agyakwa, K.T.; Charuka, B. Coastal Flooding Caused by Extreme Coastal Water Level at the World Heritage Historic Keta City (Ghana, West Africa). J. Mar. Sci. Eng. 2023, 11, 1144. [Google Scholar] [CrossRef]
- Benito, I.; Aerts, J.C.J.H.; Eilander, D.; Ward, P.J.; Muis, S. Stochastic coastal flood risk modelling for the east coast of Africa. npj Nat. Hazards 2024, 1, 10. [Google Scholar] [CrossRef]
- Ghomsi, F.E.K.; Nyberg, B.; Raj, R.P.; Bonaduce, A.; Abiodun, B.J.; Johannessen, O.M. Sea level rise and coastal flooding risks in the Gulf of Guinea. Sci. Rep. 2024, 14, 29551. [Google Scholar] [CrossRef] [PubMed]
- Cissé, C.O.T. The perception and management of the risk of marine submersion on the Petite Côte (West Africa, Senegal). Geogr. Space Moroc. Soc. 2024, 1, 211–241. [Google Scholar] [CrossRef]
- Cissé, C.O.T.; Marić, I.; Domazetović, F.; Glavačević, K.; Almar, R. Derivation of Coastal Erosion Susceptibility and Socio-Economic Vulnerability Models for Sustainable Coastal Management in Senegal. Sustainability 2024, 16, 7422. [Google Scholar] [CrossRef]
- Cissé, C.O.T.; Almar, R.; Youm, J.P.M.; Jolicoeur, S.; Taveneau, A.; Sy, B.A.; Sakho, I.; Sow, B.A.; Dieng, H. Extreme Coastal Water Levels Evolution at Dakar (Senegal, West Africa). Climate 2022, 11, 6. [Google Scholar] [CrossRef]
- Cisse, C.O.T.; Brempong, E.K.; Taveneau, A.; Almar, R.; Sy, B.A.; Angnuureng, D.B. Extreme coastal water levels with potential flooding risk at the low-lying Saint Louis historic city, Senegal (West Africa). Front. Mar. Sci. 2022, 9, 993644. [Google Scholar] [CrossRef]
- Mendoza, E.T.; Salameh, E.; Sakho, I.; Turki, I.; Almar, R.; Ojeda, E.; Deloffre, L.; Frappart, F.; Laignel, B. Coastal flood vulnerability assessment, a satellite remote sensing and modeling approach. Remote Sens. Appl. Soc. Environ. 2023, 29, 100923. [Google Scholar] [CrossRef]
- Mendoza, E.; Salameh, E.; Turki, E.; Deloffre, J.; Laignel, B. Satellite-based flood mapping of coastal floods: The Senegal River estuary study case. Int. J. Appl. Earth Obs. Geoinf. 2025, 138, 104476. [Google Scholar] [CrossRef]
- Bakhoum, P.W.; Niang, I.; Sambou, B.; Diaw, A.T. A peninsula in coastal erosion? Dakar, the Senegalese capital facing sea rise in the context of climate change. Environ. Water Sci. Public Health Territ. Intell. 2018, 2, 91–108. Available online: http://revues.imist.ma/?journal=ewash-ti/ (accessed on 21 November 2022).
- Samou, M.S.; Bertin, X.; Sakho, I.; Lazar, A.; Sadio, M.; Diouf, M.B. Wave Climate Variability along the Coastlines of Senegal over the Last Four Decades. Atmosphere 2023, 14, 1142. [Google Scholar] [CrossRef]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Pujol, M.-I.; Faugère, Y.; Taburet, G.; Dupuy, S.; Pelloquin, C.; Ablain, M.; Picot, N. DUACS DT2014: The new multi-mission altimeter data set reprocessed over 20 years. Ocean. Sci. 2016, 12, 1067–1090. [Google Scholar] [CrossRef]
- Marti, F.; Cazenave, A.; Birol, F.; Passaro, M.; Léger, F.; Niño, F.; Almar, R.; Benveniste, J.; Legeais, J.F. Altimetry-based sea level trends along the coasts of Western Africa. Adv. Space Res. 2021, 68, 504–522. [Google Scholar] [CrossRef]
- Carrère, L.; Lyard, F.; Cancet, M.; Guillot, A.; Picot, N. Finite Element Solution FES2014, a new tidal model—Validation results and perspectives for improvements. In Proceedings of the ESA Living Planet Conference, Prague, Czech Republic, 9–13 May 2016. [Google Scholar]
- Genovese, E.; Green, C. Assessment of storm surge damage to coastal settlements in Southeast Florida. J. Risk Res. 2014, 18, 407–427. [Google Scholar] [CrossRef]
- Cid, A.; Menéndez, M.; Castanedo, S.; Abascal, A.J.; Méndez, F.J.; Medina, R. Long-term changes in the frequency, intensity and duration of extreme storm surge events in southern Europe. Clim. Dyn. 2015, 46, 1503–1516. [Google Scholar] [CrossRef]
- Ailian, L.; Guan, S.; Mo, D.; Hou, Y.; Hong, X.; Liu, Z. Modeling wave effects on storm surge from different typhoon intensities and sizes in the South China Sea. Estuar. Coast. Shelf Sci. 2019, 235, 106551. [Google Scholar] [CrossRef]
- Arns, A.; Wahl, T.; Haigh, I.; Jensen, J.; Pattiaratchi, C. Estimating extreme water level probabilities: A comparison of the direct methods and recommendations for best practise. Coast. Eng. 2013, 81, 51–66. [Google Scholar] [CrossRef]
- Almar, R.; Ranasinghe, R.; Bergsma, E.W.J.; Diaz, H.; Melet, A.; Papa, F.; Vousdoukas, M.; Athanasiou, P.; Dada, O.; Almeida, L.P.; et al. A global analysis of extreme coastal water levels with implications for potential coastal overtopping. Nat. Commun. 2021, 12, 1–9. [Google Scholar] [CrossRef]
- Tano, A.R.; Djakouré, S.; Yao, S.; Kouadio, Y.; Aman, A. Characterization of Coastal Flooding Events along Cote d’Ivoire (West Africa). J. Coast. Res. 2023, 39, 494–501. [Google Scholar] [CrossRef]
- Dolan, R.; Davis, R.E. An intensity scale for Atlantic coast northeast storms. J. Coast. Res. 1992, 8, 840–853. [Google Scholar]
- Lobeto, H.; Semedo, A.; Lemos, G.; Dastgheib, A.; Menendez, M.; Ranasinghe, R.; Bidlot, J.-R. Global coastal wave storminess. Sci. Rep. 2024, 14, 1–18. [Google Scholar] [CrossRef]
- Mendoza, E.T.; Jimenez, J.A.; Mateo, J. A coastal storms intensity scale for the Catalan sea (NW Mediterranean). Nat. Hazards Earth Syst. Sci. 2011, 11, 2453–2462. [Google Scholar] [CrossRef]
- Arnoux, F.; Abadie, S.; Bertin, X.; Kojadinovic, I. Coastal flooding event definition based on damages: Case study of Biarritz Grande Plage on the French Basque coast. Coast. Eng. 2021, 166, 103873. [Google Scholar] [CrossRef]
- Breiman, L.; Friedman, J.; Olshen, R.A.; Stone, C.J. Classification and Regression Trees; Routledge: London, UK, 2017. [Google Scholar]
- Neumann, J.E.; Emanuel, K.; Ravela, S.; Ludwig, L.; Kirshen, P.; Bosma, K.; Martinich, J. Joint effects of storm surge and sea-level rise on US Coasts: New economic estimates of impacts, adaptation, and benefits of mitigation policy. Clim. Change 2014, 129, 337–349. [Google Scholar] [CrossRef]
- Shi, X.; Liu, S.; Yang, S.; Liu, Q.; Tan, J.; Guo, Z. Spatial–temporal distribution of storm surge damage in the coastal areas of China. Nat. Hazards 2015, 79, 237–247. [Google Scholar] [CrossRef]
- Rizzi, J.; Torresan, S.; Zabeo, A.; Critto, A.; Tosoni, A.; Tomasin, A.; Marcomini, A. Assessing storm surge risk under future sea-level rise scenarios: A case study in the North Adriatic coast. J. Coast. Conserv. 2017, 21, 453–471. [Google Scholar] [CrossRef]
- Hammett, V.L.; Worzala, E.; Springer, T. The devastating impact of storm surge on coastal communities. Real Estate Issues 2018, 24, 1–14. [Google Scholar]
- Hoshino, S.; Esteban, M.; Mikami, T.; Takagi, H.; Shibayama, T. Estimation of increase in storm surge damage due to climate change and sea level rise in the Greater Tokyo area. Nat. Hazards 2015, 80, 539–565. [Google Scholar] [CrossRef]
- Andrée, E.; Su, J.; Larsen, M.A.D.; Madsen, K.S.; Drews, M. Simulating major storm surge events in a complex coastal region. Ocean. Model. 2021, 162, 101802. [Google Scholar] [CrossRef]
- Nicholls, R.J.; Wong, P.P.; Burkett, V.R.; Codignotto, J.O.; Hay, J.E.; McLean, R.F.; Ragoonaden, S.; Woodroffe, C.D. Coastal systems and low-lying areas. In Climate Change 2007: Impacts, Adaptation and Vulnerability: Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Parry, M.L., Canziani, O.F., Palutikof, J.P., van der Linden, P.J., Hanson, C.E., Eds.; Cambridge University Press: Cambridge, UK, 2007; pp. 315–356. [Google Scholar]
- Marone, A. Diagnosis of Continental and Marine Flood Risks: Application to the scale of the communes of Rufisque (Senegal). Ph.D. Thesis, University of Caen, Caen, France; 427p.
- Arns, A.; Wahl, T.; Dangendorf, S.; Jensen, J. The impact of sea level rise on storm surge water levels in the northern part of the German Bight. Coast. Eng. 2015, 96, 118–131. [Google Scholar] [CrossRef]
- Androulidakis, Y.S.; Kombiadou, K.D.; Makris, C.V.; Baltikas, V.N.; Krestenitis, Y.N. Storm surges in the Medi-terranean Sea: Variability and trends under future climatic conditions. Dyn. Atmos. Ocean. 2015, 71, 56–82. [Google Scholar] [CrossRef]
- Solano, C.L.; Turki, E.I.; Mendoza, E.T.; Barceló, A.D.G.; Migaud, A.; Hamdi, Y.; Laignel, B.; Lafite, R. Hydrodynamic modelling for simulating nearshore waves and sea levels: Classification of extreme events from the English Channel to the Normandy coasts. Nat. Hazards 2024, 120, 13951–13973. [Google Scholar] [CrossRef]
- Nhantumbo, J.B.; Dada, O.A.; Ghomsi, F.E.K. Sea Level Rise and Climate Change—Impacts on African Coastal Systems and Cities; IntechOpen: London, UK, 2023. [Google Scholar]
- Hatzikyriakou, A.; Lin, N.; Gong, J.; Xian, S.; Hu, X.; Kennedy, A. Component-Based Vulnerability Analysis for Residential Structures Subjected to Storm Surge Impact from Hurricane Sandy. Nat. Hazards Rev. 2016, 17, 05015005. [Google Scholar] [CrossRef]
- Kekeh, M.; Akpinar-Elci, M.; Allen, M.J. Sea level rise and coastal communities. In Extreme Weather Events and Human Health: International Case Studies; Springer: Chan, Switzerland, 2020; pp. 171–184. [Google Scholar]
- Martzikos, N.T.; Prinos, P.E.; Memos, C.D.; Tsoukala, V.K. Key research issues of coastal storm analysis. Ocean. Coast. Manag. 2021, 199, 105389. [Google Scholar] [CrossRef]
- Mentaschi, L.; Vousdoukas, M.I.; Voukouvalas, E.; Dosio, A.; Feyen, L. Global changes of extreme coastal wave energy fluxes triggered by intensified teleconnection patterns. Geophys. Res. Lett. 2017, 44, 2416–2426. [Google Scholar] [CrossRef]
- Roelvink, D.; Reniers, A.; Van Dongeren, A.; van Thiel De Vries, J.; McCall, R.; Lescinski, J. Modelling storm impacts on beaches, dunes and barrier islands. Coast. Eng. 2009, 56, 1133–1152. [Google Scholar] [CrossRef]
- Vousdoukas, M.I.; Mentaschi, L.; Voukouvalas, E.; Bianchi, A.; Dottori, F.; Feyen, L. Climatic and socioeconomic controls of future coastal flood risk in Europe. Nat. Clim. Chang. 2018, 8, 776–780. [Google Scholar] [CrossRef]
- Lira-Loarca, A.; Cobos, M.; Losada, M.A.; Baquerizo, A. Storm characterization and simulation for structural damage evolution models. Coast. Eng. 2020, 156, 103620. [Google Scholar] [CrossRef]
- Camus, P.; Méndez, F.J.; Losada, I.J. A method for estimating the variability of wave extremes in the vicinity of a shoreline. Coast. Eng. 2013, 82, 15–28. [Google Scholar]
- Barth, J.A.; Alvera-Azcárate, A. Coastal Observing Systems for Improving Ocean Forecasting and Management. Front. Mar. Sci. 2021, 8, 679563. [Google Scholar]
Storm | Duration | Impact | Certainty | Hs | Tp | Dir | SLA | DAC | Tide | R | Es | ECWL |
---|---|---|---|---|---|---|---|---|---|---|---|---|
n | T | 0 | 0 | X | X | X | X | X | X | X | X | X |
1 | 1 | X | X | X | X | X | X | X | X | X | ||
n0 | t0 | 0 | 1 | X | X | X | X | X | X | X | X | X |
Years | Date | Sources |
---|---|---|
1981 | unknown date | I |
1987 | 22 February | I |
1988 | unknown date | I |
1993 | 7 July | J1, T1, I |
1997 | 5 July | A1, T2 |
2002 | unknown date | I |
2004 | 4 August | I |
2005 | 20 July | T1, I |
2007 | 1 July | J1, T1, I |
2009 | 23 June | A1, T2 |
2011 | 12 May | T2 |
2014 | 30 May | A1, T2 |
2015 | 31 August | A1,T1 |
2015 | 11 September | T2 |
2016 | 3 August | J2 |
2017 | 31 March | I |
2018 | 18/19 November | J3 |
2018 | 14/15 December | J3 |
2019 | 5/6 April | J4 |
2019 | 30 November | A2 |
2020 | 22 July | I |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cisse, C.O.T. Satellite and Statistical Approach for the Characterization of Coastal Storms Causing Damage on the Dakar Coast, Capital of Senegal (West Africa). Coasts 2025, 5, 24. https://doi.org/10.3390/coasts5030024
Cisse COT. Satellite and Statistical Approach for the Characterization of Coastal Storms Causing Damage on the Dakar Coast, Capital of Senegal (West Africa). Coasts. 2025; 5(3):24. https://doi.org/10.3390/coasts5030024
Chicago/Turabian StyleCisse, Cheikh Omar Tidjani. 2025. "Satellite and Statistical Approach for the Characterization of Coastal Storms Causing Damage on the Dakar Coast, Capital of Senegal (West Africa)" Coasts 5, no. 3: 24. https://doi.org/10.3390/coasts5030024
APA StyleCisse, C. O. T. (2025). Satellite and Statistical Approach for the Characterization of Coastal Storms Causing Damage on the Dakar Coast, Capital of Senegal (West Africa). Coasts, 5(3), 24. https://doi.org/10.3390/coasts5030024