Assessment of Infiltration Swale Performance as a Low-Impact Development Technique in Tropical Coastal Environments
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Infiltration Swale Description and Monitoring
2.3. Hydrology Flow Calculation and Data Evaluation
2.3.1. Runoff
2.3.2. Soil Sampling, Hydraulic Conductivity Measure, Groundwater, and Sea Level Monitoring
2.3.3. Data Processing
- Is the infiltration process predominant in the swale or the structure functions as a drainage channel?
- If the infiltration process is predominant, what are the swale performance patterns in the face of seasonal variations in rainfall indices and tide/sea level?
3. Results and Discussion
3.1. Sampled Rainfall Characteristics
3.2. Soil and Infiltration Characteristics
3.3. Hydrologic Functions and Hydraulic Performance of the Infiltration Swale
3.3.1. Precipitation and Swale’s Percentage of Infiltration
3.3.2. Runoff Volume Control
3.3.3. Peak Flow Analysis
3.3.4. Hydraulic Performance Patterns of the Swale
3.4. Interface between Infiltration Swale, Aquifer Level, and Tide Level
3.4.1. Tide and Sea Level Analysis
3.4.2. Performance of the System in Coastal Ecosystems
3.5. Global Evaluation with Principal Component Analysis (PCA)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fletcher, T.D.; Shuster, W.; Hunt, W.F.; Ashley, R.; Butler, D.; Arthur, S.; Trowsdale, S.; Barraud, S.; Semadeni-Davies, A.; Bertrand-Krajewski, J.L.; et al. SUDS, LID, BMPs, WSUD and more—The evolution and application of terminology surrounding urban drainage. Urban Water J. 2015, 12, 525–542. [Google Scholar] [CrossRef]
- Fu, G.; Butler, D.; Khu, S.T. The impact of new developments on river water quality from an integrated system modelling perspective. Sci. Total Environ. 2009, 407, 1257–1267. [Google Scholar] [CrossRef] [PubMed]
- Todeschini, S. Hydrologic and Environmental Impacts of Imperviousness in an Industrial Catchment of Northern Italy. J. Hydrol. Eng. 2016, 21, 05016013. [Google Scholar] [CrossRef]
- Ahmed, F.; Gulliver, J.S.; Nieber, J.L. Field infiltration measurements in grassed roadside drainage ditches: Spatial and temporal variability. J. Hydrol. 2015, 530, 604–611. [Google Scholar] [CrossRef]
- Allen, D.; Olive, V.; Arthur, S.; Haynes, H. Urban Sediment Transport through an Established Vegetated Swale: Long Term Treatment Efficiencies and Deposition. Water 2015, 7, 1046–1067. [Google Scholar] [CrossRef]
- Lantin, A.; Barrett, M. Design and pollutant reduction of vegetated strips and swales. In Impacts of Global Climate Change; Walton, R., Ed.; ASCE: Reston, VI, USA, 2005; p. 172. [Google Scholar] [CrossRef]
- Deletic, A.; Fletcher, T.D. Performance of grass filters used for stormwater treatment—A field and modelling study. J. Hydrol. 2006, 317, 261–275. [Google Scholar] [CrossRef]
- Stagge, J.H. Field Evaluation of Hydrologic and Water Quality Benefits of Grass Swales for Managing Highway Runoff. Ph.D. Thesis, University of Maryland, College Park, MA, USA, 2006. [Google Scholar]
- Abida, H.; Sabourin, J.F. Grass Swale-Perforated Pipe Systems for Stormwater Management. J. Irrig. Drain. Eng. 2006, 132, 55–63. [Google Scholar] [CrossRef]
- Saniei, K.; Yazdi, J.; Majdzadehtabatabei, M.R. Optimal size, type and location of low impact developments (LIDs) for urban stormwater control article history. Urban Water J. 2021, 18, 585–597. [Google Scholar] [CrossRef]
- Borst, M.; Asce, S.D.S.A.M.; Muthukrishnan, S.; Selvakumar, A. Swale Performance for Stormwater Runoff. In Proceedings of the World Environmental and Water Resources Congress 2007: Restoring Our Natural Habitat, Tampa, FL, USA, 15–19 May 2007; pp. 182–190. [Google Scholar] [CrossRef]
- Xu, C.; Shi, X.; Jia, M.; Han, Y.; Zhang, R.; Ahmad, S.; Jia, H. China Sponge City database development and urban runoff source control facility configuration comparison between China and the US. J. Environ. Manag. 2022, 304, 114241. [Google Scholar] [CrossRef]
- Demirezen, K.I.; Kazezylmaz-Alhan, C.M. Evaluation of the Hydrological Performance of Infiltration Trench with Rainfall-Watershed-Infiltration Trench Experimental Setup. J. Hydrol. Eng. 2022, 27, 04021050. [Google Scholar] [CrossRef]
- Peng, J.; Ouyang, J.; Yu, J. The model of low impact development of a sponge airport: A case study of Beijing Daxing International Airport. J. Water Clim. Chang. 2021, 12, 116–126. [Google Scholar] [CrossRef]
- Poleto, C. SUDS (Sustainable Urban Drainage Systems): Uma Contextualização Histórica. Rev. Thema 2011, 8, 38–58. [Google Scholar] [CrossRef]
- Arkema, K.K.; Guannel, G.; Verutes, G.; Wood, S.A.; Guerry, A.; Ruckelshaus, M.; Kareiva, P.; Lacayo, M.; Silver, J.M. Coastal habitats shield people and property from sea-level rise and storms. Nat. Clim. Chang. 2013, 3, 913–918. [Google Scholar] [CrossRef]
- Barbier, E.B.; Hacker, S.D.; Kennedy, C.; Koch, E.W.; Stier, A.C.; Silliman, B.R. The value of estuarine and coastal ecosystem services. Ecol. Monogr. 2011, 81, 169–193. [Google Scholar] [CrossRef]
- Ruckelshaus, M.H.; Guannel, G.; Arkema, K.; Verutes, G.; Griffin, R.; Guerry, A.; Silver, J.; Faries, J.; Brenner, J.; Rosenthal, A. Evaluating the benefits of green infrastructure for coastal areas. Coast. Manag. 2016, 44, 504–516. [Google Scholar] [CrossRef]
- Zonn, I. Atlas of the Oceans. In The Eastern Arctic Seas Encyclopedia; Springer: Berlin/Heidelberg, Germany, 2016; p. 31. [Google Scholar]
- Davis, A.P.; Stagge, J.H.; Jamil, E.; Kim, H. Hydraulic performance of grass swales for managing highway runoff. Water Res. 2012, 46, 6775–6786. [Google Scholar] [CrossRef]
- Revitt, D.M.; Ellis, J.B.; Lundy, L. Assessing the impact of swales on receiving water quality. Urban Water J. 2017, 14, 839–845. [Google Scholar] [CrossRef]
- Silva, A.H.C.L. Controle da Poluição Difusa de Origem Pluvial em uma via de Tráfego Intenso por Meio de Trincheira de Infiltração e Vala de Detenção. Ph.D. Thesis, Universidade Federal de Minas Gerais, Belo Horizote, Brazil, 2009. [Google Scholar]
- Gutierrez, L.A.R. Avaliação da Qualidade da Agua de Chuva e de um Sistema Filtro-Vala-Trincheira de Infiltração no Tratamento do Escomaento Superficial Direto Predial em Escala real em São Carlos-SP. Ph.D. Thesis, Universidade Federal de São Carlos, São Paulo, Brazil, 2011. [Google Scholar]
- Lucas, A.H. Monitoramento e Modelagem de um Sistema Filtro—Vala—Trincheira de Infiltração em Escala Real. Ph.D. Thesis, Universidade Federal de São Carlos, São Carlos, Brazil, 2011. [Google Scholar]
- Lucas, A.H.; Sobrinha, L.A.; Moruzzi, R.B.; Barbassa, A.P. Avaliação da construção e operação de técnicas compensatórias de drenagem urbana: O transporte de finos, a capacidade de infiltração, a taxa de infiltração real do solo e a permeabilidade da manta geotêxtil. Eng. Sanit. Ambient. 2015, 20, 17–28. [Google Scholar] [CrossRef]
- Ekka, S.A.; Rujner, H.; Leonhardt, G.; Blecken, G.-T.; Viklander, M.; Hunt, W.F. Next generation swale design for stormwater runoff treatment: A comprehensive approach. J. Environ. Manag. 2021, 279, 111756. [Google Scholar] [CrossRef]
- Zhang, K.; Chui, T.F.M. A review on implementing infiltration-based green infrastructure in shallow groundwater environments: Challenges, approaches, and progress. J. Hydrol. 2019, 579, 124089. [Google Scholar] [CrossRef]
- Andrade, S.F. Estudo de Estratégias Bioclimáticas no Clima de Florianópolis. Ph.D. Thesis, Universidade Federal de Santa Catarina, Florianópolis, Brazil, 1996. [Google Scholar]
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef]
- Inmet Web Base e Dados Climatológicos do Brasil. Available online: https://portal.inmet.gov.br/normais (accessed on 5 December 2022).
- Rech, A.; Pacheco, E.; Caprario, J.; Rech, J.C.; Finotti, A.R. Low-Impact Development (LID) in Coastal Watersheds: Infiltration Swale Pollutant Transfer in Transitional Tropical/Subtropical Climates. Water 2022, 14, 238. [Google Scholar] [CrossRef]
- Maidment, D.R. Handbook of Hydrology; McGraw Hill Companies: New York, NY, USA, 1993. [Google Scholar]
- Dunkerley, D. Identifying individual rain events from pluviograph records: A review with analysis of data from an Australian dryland site. Hydrol. Process. 2008, 22, 5024–5036. [Google Scholar] [CrossRef]
- ABNT Brazilian Technical Standard 07181: Soil Particle Size Determination with Sieves and Sedimentation. Water 1984, 14, 238.
- Silveira, A. Desempenho de Fórmulas de Tempo de Concentração em Bacias Urbanas e Rurais. Rev. Bras. Recur. Hídricos. 2005, 10, 5–29. [Google Scholar] [CrossRef]
- Back, Á.J.; Henn, A.; Oliveira, J.L.R. Heavy Rainfall Equations for Santa. Rev. Bras. Ciência Solo 2011, 35, 2127–2134. [Google Scholar] [CrossRef]
- Santos, H.G.; Jacomine, P.K.; Anjos, L.H.C.; Oliveira, V.A.; Lumbreras, J.F.; Coelho, M.R.; Almeida, J.A.; Araujo Filho, J.C.; Oliveira, J.B.; Cunha, T.J.F. Brazilian Soil Classification System; Embrapa: Brasilia, Brazil, 2018. [Google Scholar]
- Food and Agriculture Organization of the United Nations. World Reference Base for Soil Resouces 2014; FAO ONU: Rome, Italy, 2015. [Google Scholar]
- Pacheco, E.F. Avaliação quali-quantitativa do desempenho de uma vala de infiltração de águas pluviais implantada em Florianópolis. In Dissertação de Mestrado Apresentada ao Programa de Pós-Graduação em Engenharia Ambiental; Universidade Federal de Santa Catarina: Florianópolis, Brazil, 2015. [Google Scholar]
- Butler, J.J. The Design of Slug Tests. Des. Performance, Anal. Slug Tests, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2019; pp. 9–28. [Google Scholar]
- Johnson, A.I. A Field Method for Measurement of Infiltration; US Geological Survey: Washington, DC, USA, 1963.
- Nasta, P.; Adane, Z.; Lock, N.; Houston, A.; Gates, J.B. Links between episodic groundwater recharge rates and rainfall events classified according to stratiform-convective storm scoring: A plot-scale study in eastern Nebraska. Agric. For. Meteorol. 2018, 259, 154–161. [Google Scholar] [CrossRef]
- Lewellyn, C.; Lyons, C.E.; Traver, R.G.; Wadzuk, B.M. Evaluation of Seasonal and Large Storm Runoff Volume Capture of an Infiltration Green Infrastructure System. J. Hydrol. Eng. 2016, 21, 4015047. [Google Scholar] [CrossRef]
- Ronquim, J. Gestão da Drenagem Urbana em Palmas PR; Universidade Estadual de Maringá: Maringá, Brazil, 2014. [Google Scholar]
- Macedo, M.B.; Rosa, A.; Mendiondo, E.M.; Souza, V.C.B. Otimização da eficiência de técnicas compensatórias de biorretenção em clima subtropical. In Proceedings of XXI Simpósio Brasileiro de Recursos Hídricos; ABRH: Brasilia, Brazil, 2015. [Google Scholar]
- Rushton, B.T. Low-Impact Parking Lot Design Reduces Runoff and Pollutant Loads. J. Water Resour. Plan. Manag. 2001, 127, 172–179. [Google Scholar] [CrossRef]
- Bäckström, M. Sediment transport in grassed swales during simulated runoff events. Water Sci. Technol. 2002, 45, 41–49. [Google Scholar] [CrossRef] [PubMed]
- Ackerman, D.; Stein, E.D. Evaluating the Effectiveness of Best Management Practices Using Dynamic Modeling. J. Environ. Eng. 2008, 134, 628–639. [Google Scholar] [CrossRef]
- Deletic, A. Modelling of water and sediment transport over grassed areas. J. Hydrol. 2001, 248, 168–182. [Google Scholar] [CrossRef]
- Caprario, J.; Finotti, A.R. Socio-technological tool for mapping susceptibility to urban flooding. J. Hydrol. 2019, 574, 574–1152. [Google Scholar] [CrossRef]
Events | Tasc | Dasc | DNR | P | Im | Qe | Qo | Ve | Vot | Vi | Tld | Slm | %Inf Inf | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
days | (min) | (min) | (mm) | (mm/h) | (m³/s) | (m³/s) | (m³) | (m³) | (m³) | (cm) | (cm) | |||
Winter | 1 Aug 14 | 235 | 10 | 7 | 14.6 | 3.73 | 7.2 | 3.6 | 6.0 | 3.9 | 2.8 | 44.1 | 21.7 | 48.43 |
4 Aug 14 | 135 | 20 | 2.5 | 10.4 | 4.62 | 9.0 | 5.8 | 16.9 | 10.2 | 6.2 | 50.7 | 22.0 | 36.50 | |
12 Aug 14 | 310 | 40 | 7 | 16 | 3.10 | 8.3 | 6.1 | 24.4 | 14.2 | 10.9 | 64.0 | 23.3 | 44.79 | |
16 Aug 14 | 249 | 145 | 4 | 10 | 2.41 | 7.2 | 4.7 | 16.0 | 8.9 | 6.1 | 45.9 | 23.1 | 38.16 | |
16 Aug 14 | 345 | 44 | 0 | 7.4 | 1.29 | 7.2 | 4.3 | 29.6 | 16.4 | 8.9 | 45.9 | 23.1 | 29.87 | |
25 Aug 14 | 285 | 145 | 9 | 15.2 | 3.20 | 7.6 | 4.7 | 29.9 | 15.8 | 14.1 | 41.6 | 23.4 | 47.25 | |
31 Aug 14 | 330 | 213 | 6 | 38.4 | 6.98 | 9.4 | 6.1 | 47.2 | 25.7 | 21.5 | 38.3 | 21.0 | 45.51 | |
2 Sept 14 | 189 | 6 | 0 | 15.2 | 4.83 | 8.3 | 6.5 | 13.0 | 5.9 | 6.9 | 62.2 | 22.2 | 53.30 | |
3 Sept 14 | 180 | 63 | 0 | 2.6 | 0.87 | 2.5 | 2.2 | 3.6 | 1.7 | 1.9 | 41.7 | 21.0 | 53.10 | |
3 Sept 14 | 333 | 27 | 0 | 9.8 | 1.77 | 3.6 | 3.2 | 10.3 | 6.0 | 4.2 | 41.7 | 21.0 | 41.31 | |
21 Aug 15 | 670 | 110 | 9.2 | 0.82 | 5.4 | 2.5 | 40.2 | 10.6 | 29.8 | 57.9 | 22.2 | 74.07 | ||
22 Aug 15 | 240 | 75 | 0 | 2.8 | 0.70 | 5.4 | 2.9 | 30.6 | 5.7 | 24.9 | 34.1 | 19.2 | 81.38 | |
25 Aug 15 | 1110 | 220 | 3 | 30.6 | 1.65 | 6.5 | 4.0 | 90.7 | 46.0 | 44.7 | 72.7 | 24.6 | 49.32 | |
26 Aug 15 | 420 | 35 | 0 | 2.4 | 0.34 | 6.5 | 4.0 | 37.2 | 14.5 | 22.7 | 33.7 | 20.9 | 60.97 | |
Spring | 24 Sept 14 | 460 | 35 | 5 | 20.2 | 2.63 | 5.8 | 4.7 | 60.5 | 24.9 | 35.6 | 20.4 | 19.9 | 58.88 |
26 Sept 14 | 420 | 145 | 0 | 9.6 | 1.37 | 7.6 | 4.0 | 30.7 | 20.7 | 9.9 | 43.2 | 23.3 | 32.42 | |
27 Sept 14 | 135 | 45 | 0 | 3 | 1.33 | 3.2 | 2.9 | 11.7 | 5.8 | 4.2 | 62.9 | 23.3 | 36.32 | |
11 Oct 14 | 505 | 415 | 5 | 11 | 1.31 | 10.1 | 6.5 | 54.4 | 11.2 | 43.2 | 39.6 | 23.4 | 79.47 | |
13 Oct 14 | 715 | 455 | 2 | 60.8 | 5.10 | 20.5 | 9.7 | 80.5 | 43.9 | 36.6 | 53.2 | 22.0 | 45.50 | |
4 Nov 14 | 70 | 15 | 1 | 4.4 | 3.77 | 5.4 | 4.7 | 7.4 | 4.2 | 3.1 | 29.6 | 20.6 | 42.70 | |
6 Nov 14 | 130 | 45 | 2 | 12 | 5.54 | 10.1 | 6.1 | 13.8 | 9.5 | 5.2 | 55.3 | 24.0 | 37.63 | |
8 Nov 14 | 45 | 25 | 2 | 5.8 | 7.73 | 8.3 | 4.7 | 16.0 | 9.3 | 6.7 | 45.9 | 21.6 | 41.76 | |
22 Nov 14 | 80 | 85 | 1.5 | 3.2 | 2.40 | 7.6 | 4.3 | 8.3 | 5.7 | 3.7 | 45.3 | 22.8 | 44.69 | |
25 Nov 14 | 1174 | 700 | 2 | 60.8 | 3.11 | 9.4 | 6.8 | 114.1 | 84.7 | 29.8 | 41.7 | 20.4 | 26.14 | |
3 Dec 14 | 530 | 420 | 9 | 8.2 | 0.93 | 9.4 | 6.5 | 42.9 | 18.8 | 24.1 | 41.7 | 20.8 | 56.11 | |
14 Dec 14 | 410 | 285 | 9 | 17 | 2.49 | 9.4 | 5.0 | 34.6 | 14.1 | 20.5 | 69.1 | 23.0 | 59.19 | |
13 Dec 14 | 30 | 20 | 0 | 3 | 6.00 | 8.6 | 5.8 | 17.4 | 5.7 | 11.7 | 59.9 | 21.4 | 67.34 | |
26 Nov 15 | 493 | 51 | 1 | 5.4 | 0.66 | 7.2 | 3.6 | 46.0 | 12.5 | 31.0 | 41.4 | 22.0 | 67.51 | |
Summer | 15 Jan 15 | 185 | 30 | 8 | 27 | 8.76 | 10.1 | 7.2 | 50.3 | 16.4 | 33.8 | 63.2 | 23.3 | 67.28 |
4 Feb 15 | 1138 | 25 | 2.5 | 53.8 | 2.84 | 6.8 | 3.2 | 17.0 | 8.2 | 9.2 | 51.2 | 22.7 | 54.40 | |
13 Feb 15 | 406 | 130 | 2 | 45.6 | 6.74 | 7.2 | 14.8 | 39.1 | 19.0 | 20.4 | 57.5 | 22.7 | 52.34 | |
8 Mar 15 | 560 | 115 | 3 | 97.6 | 10.46 | 23.0 | 15.5 | 43.7 | 24.7 | 20.0 | 49.9 | 45.83 | ||
9 Mar 15 | 1347 | 415 | 0 | 50.4 | 2.24 | 9.4 | 5.8 | 79.1 | 37.5 | 41.8 | 50.0 | 52.81 | ||
15 Mar 15 | 155 | 415 | 3.25 | 26.8 | 10.37 | 9.4 | 5.4 | 44.4 | 15.3 | 29.2 | 57.9 | 65.62 | ||
19 Mar 15 | 530 | 20 | 2 | 6.4 | 0.72 | 7.2 | 4.7 | 34.1 | 9.2 | 24.9 | 51.5 | 73.02 | ||
21 Mar 15 | 177 | 23 | 2 | 18.6 | 6.31 | 6.8 | 6.5 | 21.7 | 14.4 | 7.6 | 57.7 | 34.99 | ||
7 Jan 16 | 411 | 69 | 1 | 19.52 | 2.85 | 10.1 | 4.0 | 43.5 | 12.8 | 30.7 | 35.6 | 16 | 70.55 | |
Fall | 28 Mar 15 | 317 | 312 | 2 | 20.8 | 3.94 | 7.9 | 4.7 | 33.0 | 24.0 | 9.0 | 71.2 | 27.37 | |
29 Mar 15 | 511 | 475 | 0 | 25.8 | 3.03 | 7.6 | 2.5 | 23.5 | 5.6 | 17.9 | 51.8 | 76.00 | ||
Medium | 409.4 | 151.9 | 2.7 | 20.5 | 8.3 | 5.4 | 3.6 | 35.0 | 16.5 | 18.3 | 21.9 | 49.3 | 51.8 | |
Maximum | 1347.0 | 700.0 | 9.0 | 97.6 | 23.0 | 15.5 | 10.5 | 114.1 | 84.7 | 44.7 | 24.7 | 72.8 | 81.4 | |
Minimum | 30.0 | 6.0 | 0.0 | 2.4 | 2.5 | 2.2 | 0.3 | 3.6 | 1.7 | 1.9 | 16.1 | 20.4 | 26.1 |
EVENTS | Runoff Reduction | Advance of Peak Flow | Infiltration Efficiency (% inf) | |||
---|---|---|---|---|---|---|
Vinf > Vo | Tasc < Tc | Tasc > Tc | 25–50 | 50–75 | 75–100 | |
1 Aug 14 | x | x | ||||
4 Aug 14 | x | x | ||||
12 Aug 14 | x | x | ||||
16 Aug 14 | x | x | ||||
16 Aug 14 | x | x | ||||
25 Aug 14 | x | x | ||||
31 Aug 14 | x | x | ||||
2 Sept 14 | x | x | x | |||
3 Sept 14 | x | x | x | |||
3 Sept 14 | x | x | ||||
24 Aug 14 | x | x | x | |||
26 Aug 14 | x | x | ||||
11 Oct 14 | x | x | x | |||
13 Oct 14 | x | x | ||||
4 Nov 14 | x | x | ||||
6 Nov 14 | x | x | ||||
8 Nov 14 | x | x | ||||
22 Nov 14 | x | x | ||||
25 Nov 14 | x | x | ||||
3 Dec 14 | x | x | x | |||
12 Dec 14 | x | x | x | |||
13 Dec 14 | x | x | x | |||
15 Jan 15 | x | x | x | |||
4 Feb 15 | x | x | x | |||
13 Feb 15 | x | x | x | |||
8 Mar 15 | x | x | ||||
9 Mar 15 | x | x | x | |||
15 Mar 15 | x | x | x | |||
19 Mar 15 | x | x | x | |||
21 Mar 15 | x | x | ||||
28 Mar 15 | x | x | ||||
29 Mar 15 | x | x | x | |||
21 Aug 15 | x | x | x | |||
22 Aug 15 | x | x | x | |||
25 Aug 15 | x | x | ||||
26 Aug 15 | x | x | x | |||
26 Nov 15 | x | x | x | |||
7 Jan 16 | x | x | x | |||
No. occurrences | 19 | 1 | 37 | 19 | 15 | 4 |
% Occurrences | 50.00% | 2.63% | 97.37% | 50.00% | 39.47% | 10.53% |
Factors | Principal Components | ||
---|---|---|---|
PC1 | PC2 | PC3 | |
Tasc | 0.739 | 0.287 | −0.283 |
D | 0.357 | −0.304 | 0.059 |
P (mm) | 0.776 | −0.358 | −0.177 |
Qe | 0.660 | −0.445 | −0.033 |
Im (mm/h) | 0.069 | −0.868 | 0.108 |
Vi (m³) | 0.715 | 0.246 | −0.483 |
Sea level | 0.434 | 0.285 | 0.780 |
Tide level | 0.491 | 0.094 | 0.774 |
% Inf | 0.319 | 0.572 | −0.107 |
Eigenvalue | 2.76 | 1.73 | 1.58 |
Explained variance (%) | 30.66 | 19.24 | 17.57 |
Cumulative Eigenvalue | 2.76 | 4.49 | 6.07 |
Cumulative % of variance | 30.66 | 49.90 | 67.46 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Finotti, A.R.; Pacheco, E.F.; Uda, P.K. Assessment of Infiltration Swale Performance as a Low-Impact Development Technique in Tropical Coastal Environments. Coasts 2023, 3, 74-92. https://doi.org/10.3390/coasts3010005
Finotti AR, Pacheco EF, Uda PK. Assessment of Infiltration Swale Performance as a Low-Impact Development Technique in Tropical Coastal Environments. Coasts. 2023; 3(1):74-92. https://doi.org/10.3390/coasts3010005
Chicago/Turabian StyleFinotti, Alexandra Rodrigues, Elisa Ferreira Pacheco, and Patricia Kazue Uda. 2023. "Assessment of Infiltration Swale Performance as a Low-Impact Development Technique in Tropical Coastal Environments" Coasts 3, no. 1: 74-92. https://doi.org/10.3390/coasts3010005
APA StyleFinotti, A. R., Pacheco, E. F., & Uda, P. K. (2023). Assessment of Infiltration Swale Performance as a Low-Impact Development Technique in Tropical Coastal Environments. Coasts, 3(1), 74-92. https://doi.org/10.3390/coasts3010005