Drone Surveys Are More Efficient and Cost Effective Than Ground- and Boat-Based Surveys for the Inspection of Fishing Fleet at Harbors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Fleet Survey Protocols
2.3. Data Analysis
3. Results
3.1. Relationship between the Number of Vessels and Presence of Fishing Gear Based on the Ground-, Boat-, and Drone-Based Surveys
3.2. Cost-Effectiveness Analysis of the Survey Protocols
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- FAO. The State of World Fisheries and Aquaculture 2020; Sustainability in Action; FAO: Rome, Italy, 2020. [Google Scholar] [CrossRef]
- Micheli, M.; Elliott, M.; Bucher, M. Catalyzing the Growth of Electronic Monitoring in Fisheries: Building Greater Transparency and Accountability at Sea; California Environmental Associates: San Francisco, CA, USA; The Nature Conservancy: Arlington, VA, USA, 2018; 64p. [Google Scholar]
- Chalkiadakis, V.; Papandroulakis, N.; Livanos, G.; Moirogiorgou, K.; Giakos, G.; Zervakis, M. Designing a small-sized autonomous underwater vehicle architecture for regular periodic fish-cage net inspection. In Proceedings of the IEEE International Conference on Imaging Systems and Techniques, Beijing, China, 18–20 October 2017; pp. 1–6. [Google Scholar]
- Ubina, N.A.; Cheng, S.-C. A review of unmanned system technologies with its application to aquaculture farm monitoring and management. Drones 2022, 6, 12. [Google Scholar] [CrossRef]
- Kura, Y.; Revenga, C.; Hoshino, E.; Mock, G. Fishing for Answers: Making Sense of the Global Fish Crisis; World Resources Institute: Washington, DC, USA, 2004; p. 138. [Google Scholar]
- The World Bank. The Sunken Billions Revisited; Progress and Challenges in Global Marine Fisheries; World Bank Group: Washington, DC, USA, 2017; 258p. [Google Scholar]
- Bloom, D.; Butcher, P.A.; Colefax, A.P.; Provost, E.J.; Cullis, B.R.; Kelaher, B.P. Drones detect illegal and derelict crab traps in a shallow water estuary. Fish. Manag. Ecol. 2019, 26, 311–318. [Google Scholar] [CrossRef]
- Butcher, P.; Piddocke, T.; Colefax, A.; Hoade, B.; Peddemors, V.; Borg, L.; Cullis, B. Beach safety: Can drones provide a platform for sighting sharks? Wild. Res. 2019, 46, 701–712. [Google Scholar] [CrossRef] [Green Version]
- Reis-Filho, J.A.; Giarrizzo, T. Perspectives on the use of unmanned aerial vehicles systems (UAVs) as tools for small-scale fisheries research and management. Fisheries 2021, 47, 78–89. [Google Scholar] [CrossRef]
- Reis-Filho, J.A.; Joyeux, J.C.; Pimentel, C.R.; Teixeira, J.B.; Macieira, R.; Garla, R.C.; Mello, T.; Gasparini, J.L.; Giarrizzo, T.; Rocha, L.; et al. The challenges and opportunities of using small drones to monitor fishing activities in a marine protected area. Fish. Manag. Ecol. 2022, 29, 745–752. [Google Scholar] [CrossRef]
- Fettermann, T.; Fiori, L.; Gillman, L.; Stockin, K.A.; Bollard, B. Drone Surveys Are More Accurate Than Boat-Based Surveys of Bottlenose Dolphins (Tursiops truncatus). Drones 2022, 6, 82. [Google Scholar] [CrossRef]
- Rahman, D.A.; Sitorus, A.B.Y.; Condro, A.A. From Coastal to Montane Forest Ecosystems, Using Drones for Multi-Species Research in the Tropics. Drones 2022, 6, 6. [Google Scholar] [CrossRef]
- Pirotta, V.; Smith, A.; Ostrowski, M.; Russell, D.; Jonsen, I.; Grech, A.; Harcourt, R. An Economical Custom-Built Drone for Assessing Whale Health. Front. Mar. Sci. 2017, 4, 425. [Google Scholar] [CrossRef]
- Tucker, J.P.; Colefax, A.P.; Santos, I.R.; Kelaher, B.P.; Pagendam, D.E.; Butcher, P.A. White shark behaviour altered by stranded whale carcasses: Insights from drones and implications for beach management. Ocean Coast. Manag. 2020, 200, 105477. [Google Scholar] [CrossRef]
- Rahman, D.A.; Gonzalez, G.; Aulagnier, S. Benefit of camera trapping for surveying the critically endangered Bawean deer Axis kuhlii (Temminck, 1836). Trop. Zool. 2016, 29, 155–172. [Google Scholar] [CrossRef]
- Buckland, S.; Magurran, A.; Green, R.; Fewster, R. Monitoring change in biodiversity through composite indices. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2005, 360, 243–254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boenish, R.; Willard, D.; Kritzer, J.P.; Reardon, K. Fisheries monitoring: Perspectives from the United States. Aquac. Fish. 2020, 5, 131–138. [Google Scholar] [CrossRef]
- Tyler, S.; Jensen, O.P.; Hogan, Z.; Chandra, S.; Galland, L.M.; Simmons, J. Perspectives on the application of unmanned aircraft for freshwater fisheries census. Fisheries 2018, 43, 510–516. [Google Scholar] [CrossRef]
- Fairclough, D.V.; Brown, J.I.; Carlish, B.J.; Crisafulli, B.M.; Keay, I.S. Breathing life into fisheries stock assessments with citizen science. Sci. Rep. 2014, 4, 7249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beckmann, C.; Tracey, S.; Murphy, J.; Moore, A.; Cleary, B.; Steer, M. Assessing New Technologies and Techniques That Could Improve the Cost-Effectiveness and Robustness of Recreational Fishing Surveys; FRDC Project No 2017; NOAA Fisheries: Washington, DC, USA, 2019; p. 198. [Google Scholar]
- Ouellette, W.; Getinet, W. Remote sensing for marine spatial planning and integrated coastal areas management: Achievements, challenges, opportunities and future prospects. Rem. Sens. Applic. Soc. Environ. 2016, 4, 138–157. [Google Scholar] [CrossRef]
- Wood, G.; Lynch, T.P.; Devine, C.; Keller, K.; Figueira, W. High resolution photo-mosaic time-series imagery for monitoring human use of an artificial reef. Ecol. Evol. 2016, 6, 6963–6968. [Google Scholar] [CrossRef] [Green Version]
- Previero, M.; Gasalla, M.A. Mapping fishing grounds, resource and fleet patterns to enhance management units in data-poor fisheries: The case of snappers and groupers in the Abrolhos Bank coral-reefs (South Atlantic). Ocean Coast Manag. 2018, 154, 83–95. [Google Scholar] [CrossRef]
- Cetra, M.; Petrere, M. Seasonal and annual cycles in marine small-scale fisheries (Ilhéus—Brazil). Fish. Manag. Ecol. 2014, 21, 244–249. [Google Scholar] [CrossRef]
- Schmid, K.; Reis-Filho, J.A.; Loiola, M.; Harvey, E.S.; Kikuchi, R.K.P.; Giarrizzo, T. Habitat-specific fish fauna responses to different management regimes in the largest coral reef complex in the South Atlantic. Mar. Environ. Res. 2022, 178, 105661. [Google Scholar] [CrossRef]
- Weinfurt, K.P. Repeated measures analysis: ANOVA, MANOVA, and HLM. In Reading and Understanding MORE Multivariate Statistics; Grimm, L.G., Yarnold, P.R., Eds.; American Psychological Association: Washington, DC, USA, 2000; pp. 317–361. [Google Scholar]
- Zar, J.H. Biostatistical Analysis, 4th ed.; Prentice Hall: New Jersey, NJ, USA, 1999. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. 2019. Available online: https://www.r-project.org/ (accessed on 10 May 2022).
- Provost, E.J.; Butcher, P.A.; Coleman, M.A.; Kelaher, B.P. Assessing the viability of small aerial drones to quantify recreational fishers. Fish Manag Ecol. 2020, 27, 615–621. [Google Scholar] [CrossRef]
- Afrifa-Yamoah, E.; Taylor, S.M.; Mueller, U. Trade-off assessments between reading cost and accuracy measures for digital camera monitoring of recreational boating effort. Fish. Res. 2021, 233, 105757. [Google Scholar] [CrossRef]
- Vølstad, J.H.; Afonso, P.S.; Baloi, A.P.; de Premegi, N.; Meisfjord, J.; Cardinale, M. Probability-based survey to monitor catch and effort in coastal small-scale fisheries. Fish. Res. 2014, 151, 39–46. [Google Scholar] [CrossRef]
- Salas, S.; Chuenpagdee, R.; Seijo, J.C.; Charles, A. Challenges in the assessment and management of small-scale fisheries in Latin America and the Caribbean. Fish. Res. 2007, 87, 5–16. [Google Scholar] [CrossRef]
- Pauly, D.; Zeller, D. Catch reconstructions reveal that global marine fisheries catches are higher than reported and declining. Nat. Commun. 2016, 7, 10244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keramidas, I.; Dimarchopoulou, D.; Pardalou, A.; Tsikliras, A.C. Estimating recreational fishing fleet using satellite data in the Aeagean and Ionian Seas (Mediterranean Sea). Fish. Res. 2018, 208, 1–6. [Google Scholar] [CrossRef]
- Reis-Filho, J.A. Historical perspective of artisanal encircling gillnet use at the Brazilian coast: Changes in fishing behavior is mirrored by dwindling stocks. Fish. Manag. Ecol. 2020, 3, 1–12. [Google Scholar] [CrossRef]
- Reis-Filho, J.A.; Miranda, R.J.; Sampaio, C.L.S.; Nunes, J.A.C.C.; Leduc, A.O.H.C. Web-based and logbook catch data of permits and pompanos by small-scale and recreational fishers: Predictable spawning aggregation and exploitation pressure. Fish. Res. 2021, 243, 106064. [Google Scholar] [CrossRef]
- Morales-Nin, B.; Cardona-Pons, F.; Maynou, F.; Grau, A.M. How relevant are recreational fisheries? Motivation and activity of resident and tourist anglers in Majorca. Fish. Res. 2015, 164, 45–49. [Google Scholar] [CrossRef]
- Radford, Z.; Hyder, K.; Zarauz, L.; Mugerza, E.; Ferter, K.; Prellezo, R.; Weltersbach, M.S. The impact of marine recreational fishing on key fish stocks in European waters. PLoS ONE 2018, 13, e0201666. [Google Scholar] [CrossRef]
- Freire, K.M.F.; Almeida, Z.S.; Amador, J.R.E.T.; Aragão, J.A.; Araújo, A.R.R.; Ávila-da-Silva, A.O.; Bentes, B.; Carneiro, M.H.; Chiquieri, J.; Fernandes, C.A.F.; et al. Reconstruction of Marine Commercial Landings for the Brazilian Industrial and Artisanal Fisheries From 1950 to 2015. Front. Mar. Sci. 2021, 8, 659110. [Google Scholar] [CrossRef]
- Lloret, J.; Font, T. A comparative analysis between recreational and artisanal fisheries in a Mediterranean coastal area. Fish. Manag. Ecol. 2013, 20, 148–160. [Google Scholar] [CrossRef]
- Doukari, M.; Batsaris, M.; Papakonstantinou, A.; Topouzelis, K. A protocol for aerial survey in coastal areas using UAS. Remote Sens. 2019, 11, 1913. [Google Scholar] [CrossRef] [Green Version]
- Bradley, D.; Merrifield, M.; Miller, K.M.; Lomonico, S.; Wilson, J.R.; Gleason, M.G. Opportunities to improve fisheries management through innovative technology and advanced data systems. Fish Fish. 2019, 20, 564–583. [Google Scholar] [CrossRef]
- Lohr, S.L. Sampling: Design and Analysis, 2nd ed.; Brooks/Cole, Cengage Learning: Boston, MA, USA, 2010. [Google Scholar]
- Desfosses, C.; Beckley, L.E. Temporal and environmental factors affecting the launching of recreational boats at entrance point boat ramp, Broome, Western Australia. In Final Report of Project 2.1.1 of the Kimberley Marine Research Program Node of the Western Australian Marine Science Institution; Beckley, L.E., Ed.; Western Australian Marine Science Institution: Crawley, WA, Australia, 2015; Chapter 5; pp. 77–91. [Google Scholar]
- Linchant, J.; Lisein, J.; Semeki, J.; Lejeune, P.; Vermeulen, C. Are unmanned aircraft systems (UASs) the future of wildlife monitoring? A review of accomplishments and challenges. Mammal. Rev. 2015, 45, 239–252. [Google Scholar] [CrossRef]
Relative Standard Error (%) Sampling Proportion | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Survey Protocol | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 | 1.0 |
Drone-based | 28.05 ± 5.3 | 22.51 ± 4.7 | 20.14 ± 5.1 | 19.68 ± 4.7 | 17.53 ± 4.9 | 14.91 ± 3.3 | 13.95 ± 5.8 | 13.11 ± 2.7 | 12.18 ± 1.2 | 10.99 ± 0.8 |
Ground-based | 45.19 ± 7.2 | 43.74 ± 5.1 | 39.44 ± 5.8 | 34.11 ± 5.8 | 32.25 ± 4.1 | 29.31 ± 3.8 | 25.83 ± 5.7 | 23.05 ± 3.5 | 22.19 ± 1.9 | 20.64 ± 1.1 |
Boat-based | 48.48 ± 5.9 | 46.12 ± 6.1 | 43.58 ± 5.2 | 39.15 ± 4.9 | 38.51 ± 5.2 | 36.94 ± 4.4 | 33.13 ± 3.9 | 32.19 ± 4.1 | 29.95 ± 2.1 | 25.06 ± 0.9 |
Coverage rate (%) | ||||||||||
Drone-based | 91.1 | 93.5 | 93.9 | 96.5 | 96.9 | 97.1 | 97.5 | 98.2 | 98.5 | 98.9 |
Ground-based | 80.3 | 80.9 | 81.5 | 82.1 | 82.6 | 82.7 | 84.3 | 85.2 | 85.5 | 86.2 |
Boat-based | 75.7 | 76.4 | 77.5 | 79.9 | 80.2 | 80.6 | 81.4 | 81.9 | 82.2 | 82.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reis-Filho, J.A.; Giarrizzo, T. Drone Surveys Are More Efficient and Cost Effective Than Ground- and Boat-Based Surveys for the Inspection of Fishing Fleet at Harbors. Coasts 2022, 2, 355-368. https://doi.org/10.3390/coasts2040018
Reis-Filho JA, Giarrizzo T. Drone Surveys Are More Efficient and Cost Effective Than Ground- and Boat-Based Surveys for the Inspection of Fishing Fleet at Harbors. Coasts. 2022; 2(4):355-368. https://doi.org/10.3390/coasts2040018
Chicago/Turabian StyleReis-Filho, José Amorim, and Tommaso Giarrizzo. 2022. "Drone Surveys Are More Efficient and Cost Effective Than Ground- and Boat-Based Surveys for the Inspection of Fishing Fleet at Harbors" Coasts 2, no. 4: 355-368. https://doi.org/10.3390/coasts2040018
APA StyleReis-Filho, J. A., & Giarrizzo, T. (2022). Drone Surveys Are More Efficient and Cost Effective Than Ground- and Boat-Based Surveys for the Inspection of Fishing Fleet at Harbors. Coasts, 2(4), 355-368. https://doi.org/10.3390/coasts2040018