Spatial and Temporal Variations in Shoreline Changes of the Niger Delta during 1986–2019
Abstract
:1. Introduction
2. Geographical Setting
3. Materials and Methods
3.1. Data Sources
3.2. Image Preparation
3.3. Shoreline Position Uncertainty
3.4. Shoreline Change Analysis
4. Results
4.1. Shoreline Movement along the Niger Delta during 1986–2019
4.2. Interannual and Decadal Shoreline Changes
4.3. Delimitation of Alongshore Cells to Elucidate the Spatiotemporal Shoreline Dynamics
4.4. The Concept of Temporal Mean-Removed Shoreline
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Syvitski, J.P.M.; Saito, Y. Morphodynamics of deltas under the influence of humans. Glob. Planet. Chang. 2007, 57, 261–282. [Google Scholar] [CrossRef]
- Ericson, J.P.; Vörösmarty, C.J.; Dingman, S.L.; Ward, L.G.; Meybeck, M. Effective sea-level rise and deltas: Causes of Chang. and human dimension implications. Glob. Planet. Chang. 2006, 50, 63–82. [Google Scholar] [CrossRef]
- Tessler, Z.D.; Vörösmarty, C.J.; Grossberg, M.; Gladkova, I.; Aizenman, H.; Syvitski, J.P.M.; Foufoula-Georgiou, E. Profiling risk and sustainability in coastal deltas of the world. Science 2015, 349, 638–643. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Besset, M.; Anthony, E.J.; Bouchette, F. Multi-decadal variations in delta shorelines and their relationship to river sediment supply: An assessment and review. Earth-Sci. Rev. 2019, 193, 199–219. [Google Scholar] [CrossRef] [Green Version]
- Komar, P.D. Computer Models of Delta Growth due to Sediment Input from Rivers and Longshore Transport. GSA Bull. 1973, 84, 2217–2226. [Google Scholar] [CrossRef]
- Wright, L.D.; Coleman, J.M. Variations in morphology of major river deltas as functions of ocean wave and river discharge regimes. AAPG Bull. 1973, 57, 370–398. [Google Scholar]
- Galloway, W.D. Process framework for describing the morphologic and stratigraphic evolution of deltaic depositional systems. In Deltas, Models for Exploration; Houston Geological Society: Houston, TX, USA, 1975; pp. 86–98. [Google Scholar]
- Ruggiero, P.; Buijsman, M.; Kaminsky, G.M.; Gelfenbaum, G. Modeling the effects of wave climate and sediment supply variability on large-scale shoreline change. Mar. Geol. 2010, 273, 127–140. [Google Scholar] [CrossRef]
- Hapke, C.J.; Plant, N.G.; Henderson, R.E.; Schwab, W.C.; Nelson, T.R. Decoupling processes and scales of shoreline morphodynamics. Mar. Geol. 2016, 381, 42–53. [Google Scholar] [CrossRef] [Green Version]
- Vörösmarty, C.J.; Meybeck, M.; Fekete, B.; Sharma, K.; Green, P.; Syvitski, J.P.M. Anthropogenic sediment retention: Major global impact from registered river impoundments. Glob. Planet. Chang. 2003, 39, 169–190. [Google Scholar] [CrossRef]
- Walling, D.E.; Fang, D. Recent trends in the suspended sediment loads of the world’s rivers. Glob. Planet. Chang. 2003, 39, 111–126. [Google Scholar] [CrossRef]
- Syvitski, J.P.M.; Vörösmarty, C.J.; Kettner, A.J.; Green, P. Impact of Humans on the Flux of Terrestrial Sediment to the Global Coastal Ocean. Science 2005, 308, 376–380. [Google Scholar] [CrossRef] [PubMed]
- Syvitski, J.P.M.; Kettner, A.J.; Overeem, I.; Hutton, E.W.H.; Hannon, M.T.; Brakenridge, G.R.; Day, J.; Vörösmarty, C.; Saito, Y.; Giosan, L.; et al. Sinking Deltas Due to Human Activities. Nat. Geosci. 2009, 2, 681–686. [Google Scholar] [CrossRef]
- Dunn, F.E.; Darby, S.E.; Nicholls, R.J.; Cohen, S.; Zarfl, C.; Fekete, B.M. Projections of declining fluvial sediment delivery to major deltas worldwide in response to climate change and anthropogenic stress. Environ. Res. Lett. 2019, 14, 084034. [Google Scholar] [CrossRef]
- Nicholls, R.J.; Wong, P.P.; Burkett, V.R.; Codignotto, J.O.; Hay, J.E.; McLean, R.F.; Ragoonaden SWoodroffe, C.D. Coastal systems, and low-lying areas. In Climate Change 2007: Impacts, Adaptation and Vulnerability; Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Parry, M.L., Canziani, O.F., Palutikof, J.P., van der Linden, P.J., Hanson, C.E., Eds.; Cambridge University Press: Cambridge, UK, 2007; pp. 315–356. [Google Scholar]
- Renaud, F.G.; Syvitski, J.P.M.; Sebesvari, Z.; Werners, S.E.; Kremer, H.; Kuenzer, C.; Ramesh, R.; Jeuken, A.D.; Friedrich, J. Tipping from the Holocene to the Anthropocene: How threatened are major world deltas? Curr. Opin. Environ. Sustain. 2013, 5, 644–654. [Google Scholar] [CrossRef] [Green Version]
- Kuenzer, C.; Heimhuber, V.; Huth, J.; Dech, S. Remote Sensing for the Quantification of Land Surface Dynamics in Large River Delta Regions—A Review. Remote Sens. 2019, 11, 1985. [Google Scholar] [CrossRef] [Green Version]
- Anthony, E.J.; Brunier, G.; Besset, M.; Goichot, M.; Dussouillez, P.; Nguyen, V.L. Linking rapid erosion of the Mekong River delta to human activities. Sci. Rep. 2015, 5, 14745. [Google Scholar] [CrossRef] [Green Version]
- Moore, L.J. Shoreline mapping techniques. J. Coast. Res. 2000, 16, 111–124. [Google Scholar]
- Boak, E.H.; Turner, I.L. Shoreline Definition and Detection: A Review. J. Coast. Res. 2005, 214, 688–703. [Google Scholar] [CrossRef] [Green Version]
- Gens, R. Remote sensing of coastlines: Detection, extraction and monitoring. Int. J. Remote Sens. 2010, 31, 1819–1836. [Google Scholar] [CrossRef]
- Frihy, O.E.; Debes, E.A.; El Sayed, W.R. Processes reshaping the Nile delta promontories of Egypt: Pre- and post-protection. Geomorphology 2003, 53, 263–279. [Google Scholar] [CrossRef]
- Jiménez, J.A.; Sánchez-Arcilla, A. Medium-term coastal response at the Ebro delta, Spain. Mar. Geol. 1993, 114, 105–118. [Google Scholar] [CrossRef]
- Bergillos, R.J.; López-Ruiz, A.; Ortega-Sánchez, M.; Masselink, G.; Losada, M.A. Implications of delta retreat on wave propagation and longshore sediment transport—Guadalfeo case study (southern Spain). Mar. Geol. 2016, 382, 1–16. [Google Scholar] [CrossRef]
- Anthony, E.; Almar, R.; Aagaard, T. Recent shoreline changes in the Volta River delta, West Africa: The roles of natural processes and human impacts. Afr. J. Aquat. Sci. 2016, 41, 81–87. [Google Scholar] [CrossRef]
- Besset, M.; Gratiot, N.; Anthony, E.J.; Bouchette, F.; Goichot, M.; Marchesiello, P. Mangroves and shoreline erosion in the Mekong River delta, Viet Nam. Estuar. Coast. Shelf Sci. 2019, 226, 106263. [Google Scholar] [CrossRef]
- Dada, O.A.; Qiao, L.; Ding, D.; Li, G.; Ma, Y.; Wang, L. Evolutionary trends of the Niger Delta shoreline during the last 100years: Responses to rainfall and river discharge. Mar. Geol. 2015, 367, 202–211. [Google Scholar] [CrossRef]
- Dada, O.A.; Li, G.; Qiao, L.; Asiwaju-Bello, Y.A.; Anifowose, A.Y.B. Recent Niger Delta shoreline response to Niger River hydrology: Conflict between forces of Nature and Humans. J. Afr. Earth Sci. 2018, 139, 222–231. [Google Scholar] [CrossRef]
- Dada, O.A.; Li, G.; Qiao, L.; Ma, Y.; Ding, D.; Xu, J.; Li, P.; Yang, J. Response of waves and coastline evolution to climate var-iability off the Niger Delta coast during the past 110 years. J. Mar. Syst. 2016, 160, 64–80. [Google Scholar] [CrossRef]
- Dada, O.A.; Adesina, R.; Agbaje, A. Seasonal wave climate on the Niger Delta Shoreline: Temporal variability and Implication. J. Earth Atmos. Res. 2018, 1, 98–110. [Google Scholar]
- Adegoke, O.; Fageja, J.; James, M.; Agbaje, G.G.; Ologunorisa, E.T. An Assessment of Recent Changes in the Niger Delta Coastline Using Satellite Imagery. J. Sustain. Dev. 2010, 3, 277–296. [Google Scholar] [CrossRef]
- Kuenzer, C.; van Beijma, S.; Gessner, U.; Dech, S. Land surface dynamics and environmental challenges of the Niger Delta, Africa: Remote sensing-based analyses spanning three decades (1986–2013). Appl. Geog. 2014, 53, 354–368. [Google Scholar] [CrossRef]
- Luijendijk, A.; Hagenaars, G.; Ranasinghe, R.; Baart, F.; Donchyts, G.; Aarninkhof, S. The State of the World’s Beaches. Sci. Rep. 2018, 8, 6641. [Google Scholar] [CrossRef]
- Abam, T.K.S. Impact of dams on the hydrology of the Niger Delta. Bull. Eng. Geol. Environ. 1999, 57, 239–251. [Google Scholar] [CrossRef]
- Abam, T.K.S. Modification of Niger Delta Physical Ecology: The Role of Dams and Reservoirs; IAHS-AISH: Wallingford, UK, 2001; Volume 266, pp. 19–30. [Google Scholar]
- Allen, J.R.L. Late Quaternary Niger Delta, and Adjacent Areas: Sedimentary Environments and Lithofacies. AAPG Bull. 1965, 49, 547–600. [Google Scholar] [CrossRef]
- Sexton, W.J.; Murday, M. The morphology and sediment character of the coastline of Nigeria—The Niger Delta. J. Coast. Res. 1994, 10, 959–977. [Google Scholar]
- George, C.F.; Macdonald, D.I.M.; Spagnolo, M. Deltaic sedimentary environments in the Niger Delta, Nigeria. J. Afr. Earth Sci. 2019, 160, 103592. [Google Scholar] [CrossRef]
- Edmonds, D.A.; Caldwell, R.L.; Brondizio, E.S.; Siani, S.M.O. Coastal flooding will disproportionately impact people on river deltas. Nat. Commun. 2020, 11, 4741. [Google Scholar] [CrossRef]
- Ibe, A.C. The Niger Delta and Sea-Level Rise; Springer: Dordrecht, The Netherlands, 1996; Volume 2, pp. 249–267. [Google Scholar] [CrossRef]
- Syvitski, J.P.M.; Cohen, S.; Kettner, A.J.; Brakenridge, G.R. How important and different are tropical rivers?—An overview. Geomorphology 2014, 227, 5–17. [Google Scholar] [CrossRef]
- Anthony, E.J.; Orford, J.D. Between Wave- and Tide-Dominated Coasts: The Middle Ground Revisited. J. Coast. Res. 2002, 36, 8–15. [Google Scholar] [CrossRef] [Green Version]
- Awosika, L.; Folorunsho, R.; Imovbore, V. Morphodynamics and features of littoral cell circulation observed from sequential aerial photographs and Davies drifter along a section of the strand coast East of the Niger Delta, Nigeria. J. Oceanogr. Mar. Sci. 2013, 4, 12–18. [Google Scholar] [CrossRef]
- Oomkens, E. Lithofacies relations in the Late Quaternary Niger Delta complex. Sedimentology 1974, 21, 195–222. [Google Scholar] [CrossRef]
- Ibe, A.C.; Antia, E.E. Preliminary Assessment of the Impact of Erosion along the Nigerian Shoreline; Technical Paper 13; Nigerian Institute for Oceanography and Marine Research: Lagos, Nigeria, 1983; p. 17. [Google Scholar]
- Coleman, J.M.; Huh, O.K. Major Deltas of the World: A Perspective from Space; Report Coastal Studies Institute, and Department of Oceanography and Coastal Sciences, Louisiana State University: Baton Rouge, LA, USA, 2004; Available online: http://www.geol.lsu.edu/WDD/PUBLICATIONS/C&Hnasa04/C&Hfinal04.htm (accessed on 25 August 2021).
- Anthony, E.J. Wave influence in the construction, shaping and destruction of river deltas: A review. Mar. Geol. 2015, 361, 53–78. [Google Scholar] [CrossRef]
- Hackney, C.; Darby, S.E.; Leyland, J. Modelling the response of soft cliffs to climate change: A statistical, process-response model using accumulated excess energy. Geomorphology 2013, 187, 108–121. [Google Scholar] [CrossRef]
- Hapke, C.J.; Reid, D. National Assessment of Shoreline Change, Part 4: Historical Coastal Cliff Retreat along the California Coast; Open-File Rep. 2007-1133; USGS: Reston, VA, USA, 2017; p. 56. [Google Scholar] [CrossRef] [Green Version]
- Dada, O.A.; Li, G.; Qiao, L.; Ding, D.; Ma, Y.; Xu, J. Seasonal shoreline behaviours along the arcuate Niger Delta coast: Complex interaction between fluvial and marine processes. Cont. Shelf Res. 2016, 122, 51–67. [Google Scholar] [CrossRef]
- Anders, F.J.; Byrnes, M.R. Accuracy of Shoreline Change Rates as Determined from Maps and Aerial Photographs. Shore Beach 1991, 59, 309–318. [Google Scholar]
- Thieler, E.R.; Danforth, W.W. Historical shoreline mapping (II): Application of the Digital Shoreline Mapping and Analysis Systems (DSMS/DSAS) to shoreline change mapping in Puerto Rico. J. Coast. Res. 1994, 10, 600–620. [Google Scholar]
- Himmelstoss, E.A.; Henderson, R.E.; Kratzmann, M.G.; Farris, A.S. Digital Shoreline Analysis System (DSAS) Version 5.0 User Guide. Open-File Rep. 2018, 1179, 126. [Google Scholar]
- Maiti, S.; Bhattacharya, A.K. Shoreline change analysis and its application to prediction: A remote sensing and statistics-based approach. Mar. Geol. 2009, 257, 11–23. [Google Scholar] [CrossRef]
- Deepika, B.; Avinash, K.; Jayappa, K.S. Shoreline change rate estimation and its forecast: Remote sensing, geographical information system and statistics-based approach. Int. J. Environ. Sci. Technol. 2013, 11, 395–416. [Google Scholar] [CrossRef] [Green Version]
- Tejedor, A.; Longjas, A.; Zaliapin, I.; Foufoula-Georgiou, E. Delta channel networks: A graph-theoretic approach for studying connectivity and steady state transport on deltaic surfaces. Water Resour. Res. 2015, 51, 3998–4018. [Google Scholar] [CrossRef]
- Oyegun, C.U. Land degradation and the coastal environment of Nigeria. CATENA 1993, 20, 215–225. [Google Scholar] [CrossRef]
- Folorunsho, R.; Awosika, L. Morphological Characteristics of the Bonny and Cross River (Calabar) Estuaries in Nigeria: Implications for Navigation and Environmental Hazards; Springer: Cham, Switzerland, 2014; pp. 87–96. [Google Scholar]
- Brown, S.; Nicholls, R.J. Subsidence, and human influences in mega deltas: The case of the Ganges-Brahmaputra-Meghna. Sci. Total Environ. 2015, 527–528, 362–374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Numbere, A.O. Impact of Invasive Nypa Palm (Nypa Fruticans) on Mangroves in Coastal Areas of the Niger Delta Region, Nigeria. In Impacts of Invasive Species on Coastal Environments; Springer: Cham, Switzerland, 2018; Volume 29, pp. 425–454. [Google Scholar] [CrossRef]
- Wright, L.D. Sediment transport and deposition at river mouths: A synthesis. Geol. Soc. Am. Bull. 1977, 6, 857–868. [Google Scholar] [CrossRef]
- Ashton, A.D.; Murray, A.B. High-angle wave instability and emergent shoreline shapes: Modeling of sand waves, flying spits, and capes. J. Geophys. Res. Earth Surf. 2006, 111, F04011. [Google Scholar] [CrossRef] [Green Version]
- Burke, K. Longshore Drift, Submarine Canyons, and Submarine Fans in Development of Niger Delta. AAPG Bull. 1972, 56, 1975–1983. [Google Scholar] [CrossRef]
- Abam, T.K.S.; Oba, T. Recent case studies of sand mining, utilisation, and environmental impacts in the Niger delta. J. Environ. Geol. 2018, 2, 64–67. [Google Scholar]
- Boateng, I.; Bray, M.; Hooke, J. Estimating the fluvial sediment input to the coastal sediment budget: A case study of Ghana. Geomorphology 2012, 138, 100–110. [Google Scholar] [CrossRef]
Measurement Uncertainties | Shoreline Dates | ||||||
---|---|---|---|---|---|---|---|
1986 | 1999 | 2003 | 2008 | 2011 | 2015 | 2019 | |
Image resolution Er (m) | 30 | 30 | 30 | 30 | 30 | 20 | 20 |
Georeferencing error Eg (m) | 28.1 | 15.7 | 18.6 | 14.9 | 22.6 | 12.8 | 12.6 |
Digitizing Ed (m) | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
Total positional uncertainty Ep (m) | 41.1 | 33.9 | 35.1 | 33.5 | 37.6 | 23.8 | 23.7 |
Annualized uncertainty rate Ea (m) | ~3.0 |
Epoch | Period | Uncy (m/yr.) | Erosion | Accretion | Percent Eroding | Remark | ||
---|---|---|---|---|---|---|---|---|
Mean (m/yr.) | Max (m/yr.) | Mean (m/yr.) | Max (m/yr.) | % | ||||
All | 1986–2019 | 2.7 | −3.9 | −26.3 | 4.0 | 26.8 | 50.3 | Even change |
Epoch 1 | 1986–1999 | 4.1 | −6.2 | −72.0 | 7.2 | 60.6 | 45.8 | Slightly accretive |
Epoch 2 | 1999–2003 | 12.2 | −9.2 | −62.4 | 15.2 | 215.9 | 26.3 | Dominantly accretive |
Epoch 3 | 2003–2008 | 9.7 | −22.4 | −130.1 | 12.1 | 148.7 | 67.6 | Dominantly erosional |
Epoch 4 | 2008–2011 | 16.8 | −27.6 | −104.7 | 28.3 | 223.1 | 72.5 | Dominantly erosional |
Epoch 5 | 2011–2015 | 11.1 | −22.9 | −142.4 | 22.1 | 205.1 | 24.8 | Dominantly accretive |
Epoch 6 | 2015–2019 | 8.4 | −12.4 | −60.0 | 15.3 | 157.2 | 54.3 | Slightly erosional |
Cell | Distributaries | Human Land Use | Physical Characteristics | References | |||
---|---|---|---|---|---|---|---|
Name(s) | main | minor | settlement | Oil & gas | |||
1 | Escravos (2) | √ | √ | √ |
| [35,56] GE | |
2 | Forcados | √ | √ | √ |
| [34,35,45,57] | |
3 | Ramos | √ | X | X |
| ||
4 | Dodo (5), Pennington (6) | √ √ | X | X |
| [44,47], GE | |
5 | Digatoro (7), Middleton (8), Kulama (9), Fishtown (10) | √ √ √ √ | X | X |
| [37] | |
6 | Sangana (11), Nun | √ √ | √ | X |
| [28,37,47,56,58] | |
7 | Brass, St. Nicholas (14) | √ | X | √ X | √ X |
| [45,56] GE |
8 | Santa Barbara (15), San Bartholomew (16) | √ √ | X X | X X |
| [56] | |
9 | Sombreiro (17), New Calabar (18) | √ √ | X X | X X |
| [56] | |
10 | Bonny (19) | √ | √ | √ |
| [58] | |
11 | Andoni (20) | √ | X | X |
| GE |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Afolabi, M.; Darby, S. Spatial and Temporal Variations in Shoreline Changes of the Niger Delta during 1986–2019. Coasts 2022, 2, 203-220. https://doi.org/10.3390/coasts2030010
Afolabi M, Darby S. Spatial and Temporal Variations in Shoreline Changes of the Niger Delta during 1986–2019. Coasts. 2022; 2(3):203-220. https://doi.org/10.3390/coasts2030010
Chicago/Turabian StyleAfolabi, Matthew, and Stephen Darby. 2022. "Spatial and Temporal Variations in Shoreline Changes of the Niger Delta during 1986–2019" Coasts 2, no. 3: 203-220. https://doi.org/10.3390/coasts2030010
APA StyleAfolabi, M., & Darby, S. (2022). Spatial and Temporal Variations in Shoreline Changes of the Niger Delta during 1986–2019. Coasts, 2(3), 203-220. https://doi.org/10.3390/coasts2030010